Difference between revisions of "2004 AMC 8 Problems/Problem 14"

m (Solution 2)
m (Solution)
Line 19: Line 19:
  
 
==Solution==
 
==Solution==
Assign points to each of the four vertices and use the shoelace theorem to find the area.
+
 
Letting the bottom left corner be <math>(0,0)</math>, counting the boxes, the points would be <math>(4,0),(0,5),(3,4),</math> and <math>(10,10)</math>. Applying the [[Shoelace Theorem]],
+
Let the bottom left corner be <math>(0,0)</math>. The points would then be <math>(4,0),(0,5),(3,4),</math> and <math>(10,10)</math>. Applying the [[Shoelace Theorem]],
  
 
<cmath>\text{Area} = \frac12 |4005341010| = \frac12 |(20+30)-(15+40+40)| = \frac12 |50-95| = \boxed{\textbf{(C)}\ 22\frac12}</cmath>
 
<cmath>\text{Area} = \frac12 |4005341010| = \frac12 |(20+30)-(15+40+40)| = \frac12 |50-95| = \boxed{\textbf{(C)}\ 22\frac12}</cmath>

Revision as of 12:35, 29 January 2023

Problem

What is the area enclosed by the geoboard quadrilateral below?

[asy] unitsize(3mm); defaultpen(linewidth(.8pt)); dotfactor=2;  for(int a=0; a<=10; ++a) for(int b=0; b<=10; ++b)  {   dot((a,b));  };  draw((4,0)--(0,5)--(3,4)--(10,10)--cycle); [/asy]

$\textbf{(A)}\ 15\qquad \textbf{(B)}\ 18\frac12 \qquad \textbf{(C)}\ 22\frac12 \qquad \textbf{(D)}\ 27 \qquad \textbf{(E)}\ 41$

Solution

Let the bottom left corner be $(0,0)$. The points would then be $(4,0),(0,5),(3,4),$ and $(10,10)$. Applying the Shoelace Theorem,

\[\text{Area} = \frac12 \begin{vmatrix} 4 & 0 \\ 0 & 5 \\ 3 & 4 \\ 10 & 10 \end{vmatrix} = \frac12 |(20+30)-(15+40+40)| = \frac12 |50-95| = \boxed{\textbf{(C)}\ 22\frac12}\]

Solution 2

Apply Pick's Theorem on the figure, and you will get 5/2+21-1 which = \[\boxed{\textbf{(C)}\ 22\frac12}\]

See Also

2004 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png