Difference between revisions of "2023 AIME II Problems/Problem 3"

(Diagram)
(Solution 1)
Line 57: Line 57:
  
 
Substitute this to find that AC=<math>10\sqrt{5}</math>, thus the area is <math>\frac{(10\sqrt{5})^2}{2}=\boxed{250}</math>
 
Substitute this to find that AC=<math>10\sqrt{5}</math>, thus the area is <math>\frac{(10\sqrt{5})^2}{2}=\boxed{250}</math>
 +
~SAHANWIJETUNGA
 +
 +
 +
== Solution 2==
 +
Since the triangle is a right isosceles triangle, angles B and C are <math>45^\circ</math>
 +
 +
Do some angle chasing yielding:
 +
 +
 +
- APB=BPC=<math>135^\circ</math>
 +
 +
 +
- APC=<math>90^\circ</math>
 +
 +
 +
AC=<math>\frac{10}{\sin\theta}</math> due to APC being a right triangle. Since ABC is a 45-45-90 triangle, AB=<math>\frac{10}{\sin\theta}</math>, and BC=<math>\frac{10\sqrt{2}}{\sin\theta}</math>.
 +
 +
 +
Note that triangle APB is similar to BPC, by a factor of <math>\sqrt{2}</math>. Thus, PC=<math>10\sqrt{2}</math>
 +
 +
 +
From Pythagorean theorem, AC=<math>10\sqrt{5}</math> so the area of ABC is <math>\frac{(10\sqrt{5})^2}{2}=\boxed{250}</math>
 
~SAHANWIJETUNGA
 
~SAHANWIJETUNGA
  

Revision as of 16:49, 16 February 2023

Problem

Let $\triangle ABC$ be an isosceles triangle with $\angle A = 90^\circ.$ There exists a point $P$ inside $\triangle ABC$ such that $\angle PAB = \angle PBC = \angle PCA$ and $AP = 10.$ Find the area of $\triangle ABC.$

Diagram

[asy] /* Made by MRENTHUSIASM */  size(200); pair A, B, C, P;  A = origin; B = (0,10*sqrt(5)); C = (10*sqrt(5),0); P = intersectionpoints(Circle(A,10),Circle(C,20))[0];  dot("$A$",A,1.5*SW,linewidth(4)); dot("$B$",B,1.5*NW,linewidth(4)); dot("$C$",C,1.5*SE,linewidth(4)); dot("$P$",P,1.5*NE,linewidth(4));  markscalefactor=0.125; draw(rightanglemark(B,A,C,10),red); draw(anglemark(P,A,B,25),red); draw(anglemark(P,B,C,25),red); draw(anglemark(P,C,A,25),red); add(pathticks(anglemark(P,A,B,25), n = 1, r = 0.1, s = 10, red)); add(pathticks(anglemark(P,B,C,25), n = 1, r = 0.1, s = 10, red)); add(pathticks(anglemark(P,C,A,25), n = 1, r = 0.1, s = 10, red));  draw(A--B--C--cycle^^P--A^^P--B^^P--C); label("$10$",midpoint(A--P),dir(-30),red); [/asy] ~MRENTHUSIASM

Solution 1

Since the triangle is a right isosceles triangle, angles B and C are $45^\circ$

Let the common angle be $\theta$

Note that angle PAC is $90^\circ-\theta$, thus angle APC is $90^\circ$. From there, we know that AC is $\frac{10}{\sin\theta}$

Note that ABP is $45^\circ-\theta$, so from law of sines we have: \[\frac{10}{\sin\theta \cdot \frac{\sqrt{2}}{2}}=\frac{10}{\sin(45^\circ-\theta)}\]

Dividing by 10 and multiplying across yields: \[\sqrt{2}\sin(45^\circ-\theta)=\sin\theta\]

From here use the sin subtraction formula, and solve for $\sin\theta$

\[\cos\theta-\sin\theta=\sin\theta\] \[2\sin\theta=\cos\theta\] \[4\sin^2\theta=cos^2\theta\] \[4\sin^2\theta=1-\sin^2\theta\] \[5\sin^2\theta=1\] \[\sin\theta=\frac{1}{\sqrt{5}}\]

Substitute this to find that AC=$10\sqrt{5}$, thus the area is $\frac{(10\sqrt{5})^2}{2}=\boxed{250}$ ~SAHANWIJETUNGA


Solution 2

Since the triangle is a right isosceles triangle, angles B and C are $45^\circ$

Do some angle chasing yielding:


- APB=BPC=$135^\circ$


- APC=$90^\circ$


AC=$\frac{10}{\sin\theta}$ due to APC being a right triangle. Since ABC is a 45-45-90 triangle, AB=$\frac{10}{\sin\theta}$, and BC=$\frac{10\sqrt{2}}{\sin\theta}$.


Note that triangle APB is similar to BPC, by a factor of $\sqrt{2}$. Thus, PC=$10\sqrt{2}$


From Pythagorean theorem, AC=$10\sqrt{5}$ so the area of ABC is $\frac{(10\sqrt{5})^2}{2}=\boxed{250}$ ~SAHANWIJETUNGA

See also

2023 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png