Difference between revisions of "2023 AIME II Problems/Problem 8"

m (Solution 2 (Moduli))
Line 1: Line 1:
 +
==Problem==
 +
 +
Let <math>\omega = \cos\frac{2\pi}{7} + i \cdot \sin\frac{2\pi}{7},</math> where <math>i = \sqrt{-1}.</math> Find the value of the product<cmath>\prod_{k=0}^6 \left(\omega^{3k} + \omega^k + 1\right).</cmath>
 +
 
==Solution 1==
 
==Solution 1==
  

Revision as of 23:46, 16 February 2023

Problem

Let $\omega = \cos\frac{2\pi}{7} + i \cdot \sin\frac{2\pi}{7},$ where $i = \sqrt{-1}.$ Find the value of the product\[\prod_{k=0}^6 \left(\omega^{3k} + \omega^k + 1\right).\]

Solution 1

For any $k\in Z$, we have, \begin{align*} & \left( \omega^{3k} + \omega^k + 1 \right) \left( \omega^{3\left( 7 - k \right)} + \omega^{\left( 7 - k \right)} + 1 \right) \\ & = \omega^{3 \cdot 7} + \omega^{2k + 7} + \omega^{3k} + \omega^{-2k + 3 \cdot 7} + \omega^7 + \omega^k + \omega^{3\left( 7 - k \right)} + \omega^{\left( 7 - k \right)} + 1 \\ & = 1 + \omega^{2k} + \omega^{3k} + \omega^{-2k} + 1 + \omega^k + \omega^{-3k} + \omega^{-k} + 1 \\ & = 2 + \omega^{-3k} \sum_{j=0}^6 \omega^{j k} \\ & = 2 + \omega^{-3k} \frac{1 - \omega^{7 k}}{1 - \omega^k} \\ & = 2 . \end{align*} The second and the fifth equalities follow from the property that $\omega^7 = 1$.

Therefore, \begin{align*} \Pi_{k=0}^6 \left( \omega^{3k} + \omega^k + 1 \right) & = \left( \omega^{3 \cdot 0} + \omega^0 + 1 \right) \Pi_{k=1}^3 \left( \omega^{3k} + \omega^k + 1 \right) \left( \omega^{3\left( 7 - k \right)} + \omega^{\left( 7 - k \right)} + 1 \right) \\ & = 3 \cdot 2^3 \\ & = \boxed{\textbf{(024) }}. \end{align*}

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Solution 2 (Moduli)

Because the answer must be a positive integer, it is just equal to the modulus of the product. Define $z_n = \left(\textrm{cis }\frac{2n\pi}{7}\right)^3 + \textrm{cis }\frac{2n\pi}{7} + 1$.

Then, our product is equal to

\[z_0z_1z_2z_3z_4z_5z_6.\]

$z_0 = 0$, and we may observe that $z_x$ and $z_{7-x}$ are conjugates for any $x$, meaning that their magnitudes are the same. Thus, our product is

\[3z_1^2z_2^2z_3^2\] \[= 3((\cos \frac{6\pi}{7} + \cos \frac{2\pi}{7} + 1)^2 + (\sin \frac{6\pi}{7} + \sin \frac{2\pi}{7})^2)\] \[((\cos \frac{12\pi}{7} + \cos \frac{4\pi}{7} + 1)^2 + (\sin \frac{12\pi}{7} + \sin \frac{4\pi}{7})^2)\] \[((\cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} + 1)^2 + (\sin \frac{4\pi}{7} + \sin \frac{6\pi}{7})^2)\]

Let us simplify the first term. Expanding, we obtain

\[\cos^2 \frac{6\pi}{7} + \cos^2 \frac{2\pi}{7} + 1 + 2\cos \frac{6\pi}{7}\cos \frac{2\pi}{7} + 2\cos \frac{6\pi}{7} + 2\cos \frac{2\pi}{7} + \sin^2 \frac{6\pi}{7} + \sin^2 \frac{2\pi}{7} + 2\sin \frac{6\pi}{7}\sin \frac{2\pi}{7}.\]

Rearranging and cancelling, we obtain

\[3 + 2\cos \frac{6\pi}{7} + 2\cos \frac{2\pi}{7} + 2\cos \frac{6\pi}{7}\cos \frac{2\pi}{7} + 2\sin \frac{6\pi}{7}\sin \frac{2\pi}{7}.\]

By the cosine subtraction formula, we have $2\cos \frac{6\pi}{7}\cos \frac{2\pi}{7} + 2\sin \frac{6\pi}{7}\sin \frac{2\pi}{7} = \cos \frac{6\pi - 2\pi}{7} = \cos \frac{4\pi}{7}$.

Thus, the first term is equivalent to

\[3 + 2(\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}).\]

Similarly, the second and third terms are, respectively,

\[3 + 2(\cos \frac{4\pi}{7} + \cos \frac{8\pi}{7} + \cos \frac{12\pi}{7}),\textrm{ and}\] \[3 + 2(\cos \frac{6\pi}{7} + \cos \frac{12\pi}{7} + \cos \frac{4\pi}{7}).\]

Now, we have $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} = -\frac{1}{2}$. This is because

\[\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} = \frac{1}{2}(\textrm{cis }\frac{2\pi}{7} + \textrm{cis }\frac{4\pi}{7} + \textrm{cis }\frac{6\pi}{7} + \textrm{cis }\frac{8\pi}{7} + \textrm{cis }\frac{10\pi}{7} + \textrm{cis }\frac{12\pi}{7})\]

\[= \frac{1}{2}(-1)\] \[= -\frac{1}{2}.\]

Therefore, the first term is simply $2$. We have $\cos x = \cos 2\pi - x$, so therefore the second and third terms can both also be simplified to $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$. Thus, our answer is simply

\[3 \cdot 2 \cdot 2 \cdot 2\] \[= \boxed{\mathbf{024}}.\]

~mathboy100

See also

2023 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png