Difference between revisions of "2023 USAMO Problems/Problem 2"

(Created page with "## Problem 2 Let <math>\mathbb{R}^{+}</math> be the set of positive real numbers. Find all functions <math>f:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}</math> such that, for all...")
 
(Fixing up formatting, making sure everything looks as it should. Sorry for the previous edit, it's my first time editing on this wiki :p.)
Line 1: Line 1:
## Problem 2
+
== Problem 2 ==
 
Let <math>\mathbb{R}^{+}</math> be the set of positive real numbers. Find all functions <math>f:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}</math> such that, for all <math>x, y \in \mathbb{R}^{+}</math>,<cmath>f(xy + f(x)) = xf(y) + 2</cmath>
 
Let <math>\mathbb{R}^{+}</math> be the set of positive real numbers. Find all functions <math>f:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}</math> such that, for all <math>x, y \in \mathbb{R}^{+}</math>,<cmath>f(xy + f(x)) = xf(y) + 2</cmath>
  
## Solution
+
== Solution ==
 
First, let us plug in some special points; specifically, plugging in <math>x=0</math> and <math>x=1</math>, respectively:
 
First, let us plug in some special points; specifically, plugging in <math>x=0</math> and <math>x=1</math>, respectively:
  
\begin{align}
+
<cmath>
 +
\begin{align*}
 
     f(f(0)) &= 2 \
 
     f(f(0)) &= 2 \
 
     f(y + f(1)) &= f(y) + 2
 
     f(y + f(1)) &= f(y) + 2
\end{align}
+
\end{align*}
 +
</cmath>
  
 
Next, let us find the first and second derivatives of this function. First, with (2), we isolate <math>f(y)</math> one one side
 
Next, let us find the first and second derivatives of this function. First, with (2), we isolate <math>f(y)</math> one one side
  
 +
<cmath>
 
\begin{align*}
 
\begin{align*}
 
   f(y) = f(y + f(1)) - 2
 
   f(y) = f(y + f(1)) - 2
 
\end{align*}
 
\end{align*}
 +
</cmath>
  
 
and then take the derivative:
 
and then take the derivative:
  
 +
<cmath>
 
\begin{align*}
 
\begin{align*}
     \dv{f}{y}  
+
     \dfrac{\mathrm{d}f}{\mathrm{d}y}
     &= \dv{f}{y}\left[f(y + f(1)) - 2\right] \
+
     &=\dfrac{\mathrm{d}f}{\mathrm{d}y}\left[f(y + f(1)) - 2\right] \
     &= \dv{f}{y}\left[f(y + f(1))\right] - \dv{f}{y}\left[2\right] \
+
     &= \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[f(y + f(1))\right] - \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[2\right] \
     &= f'(y + f(1))\cdot\dv{f}{y}\left[y + f(1)\right] \
+
     &= f'(y + f(1))\cdot\dfrac{\mathrm{d}f}{\mathrm{d}y}\left[y + f(1)\right] \
 
     &= f'(y + f(1))\cdot(1)\
 
     &= f'(y + f(1))\cdot(1)\
 
     f'(y) &= f'(y + f(1))\
 
     f'(y) &= f'(y + f(1))\
 
\end{align*}
 
\end{align*}
 +
</cmath>
  
 
The second derivative is as follows:
 
The second derivative is as follows:
  
 +
<cmath>
 
\begin{align*}
 
\begin{align*}
     \dv[2]{f}{y}  
+
     \dfrac{\mathrm{d}^2f}{\mathrm{d}y^2}
     &= \dv{f}{y}\left[\dv{f}{y}\right] \
+
     &= \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[\dfrac{\mathrm{d}f}{\mathrm{d}y}\right] \
     &= \dv{f}{y}\left[f'(y + f(1))\right] \
+
     &= \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[f'(y + f(1))\right] \
     &= f''(y + f(1))\cdot\dv{f}{y}\left[y + f(1)\right] \
+
     &= f''(y + f(1))\cdot\dfrac{\mathrm{d}f}{\mathrm{d}y}\left[y + f(1)\right] \
 
     f''(y) &= f''(y + f(1))\
 
     f''(y) &= f''(y + f(1))\
 
\end{align*}
 
\end{align*}
 +
</cmath>
  
 
For both of these derivatives, we see that the input to the function does not matter: it will return the same result regardless of input. Therefore, the functions <math>f'</math> and <math>f''</math> must be constants, and <math>f</math> must be a linear equation. That means we can model <math>f(x)</math> like so:
 
For both of these derivatives, we see that the input to the function does not matter: it will return the same result regardless of input. Therefore, the functions <math>f'</math> and <math>f''</math> must be constants, and <math>f</math> must be a linear equation. That means we can model <math>f(x)</math> like so:
  
 +
<cmath>
 
\begin{align}
 
\begin{align}
 
     f(x) = ax + b
 
     f(x) = ax + b
 
\end{align}
 
\end{align}
 +
</cmath>
  
 
Via (1), we get the following:  
 
Via (1), we get the following:  
  
 +
<cmath>
 
\begin{align*}
 
\begin{align*}
 
     f(f(0)) &= 2 \
 
     f(f(0)) &= 2 \
Line 50: Line 61:
 
     ab + b &= 2
 
     ab + b &= 2
 
\end{align*}
 
\end{align*}
 +
</cmath>
  
 
And via (2),  
 
And via (2),  
  
 +
<cmath>
 
\begin{align*}
 
\begin{align*}
 
     f(y + f(1)) &= f(y) + 2 \
 
     f(y + f(1)) &= f(y) + 2 \
Line 59: Line 72:
 
     a^2 + ab &= 2 \
 
     a^2 + ab &= 2 \
 
\end{align*}
 
\end{align*}
 +
</cmath>
  
 
Setting these equations equal to each other,
 
Setting these equations equal to each other,
  
 +
<cmath>
 
\begin{align*}
 
\begin{align*}
 
     ab + b &= a^2 + ab \
 
     ab + b &= a^2 + ab \
 
     b &= a^2 \
 
     b &= a^2 \
 
\end{align*}
 
\end{align*}
 +
</cmath>
  
 
Therefore,  
 
Therefore,  
  
 +
<cmath>
 
\begin{align*}
 
\begin{align*}
 
     ab + b &= 2 \
 
     ab + b &= 2 \
 
     a^3 + a^2 &= 2 \
 
     a^3 + a^2 &= 2 \
 
\end{align*}
 
\end{align*}
 +
</cmath>
  
 
There are three solutions to this equation: <math>a = 1</math>, <math>a = -1 + i</math>, and <math>a = -1 - i</math>. Knowing that <math>b = a^2</math>, the respective <math>b</math> values are <math>b = 1</math>, <math>b = -2i</math>, and <math>b = 2i</math>. Thus, <math>f(x)</math> could be the following:
 
There are three solutions to this equation: <math>a = 1</math>, <math>a = -1 + i</math>, and <math>a = -1 - i</math>. Knowing that <math>b = a^2</math>, the respective <math>b</math> values are <math>b = 1</math>, <math>b = -2i</math>, and <math>b = 2i</math>. Thus, <math>f(x)</math> could be the following:
  
 +
<cmath>
 
\begin{align*}
 
\begin{align*}
 
     f(x) &= x + 1 \
 
     f(x) &= x + 1 \
Line 81: Line 100:
 
     f(x) &= x(-1 - i) + 2i \
 
     f(x) &= x(-1 - i) + 2i \
 
\end{align*}
 
\end{align*}
 +
</cmath>
  
 
<math>\square</math>
 
<math>\square</math>
 +
 +
~ cogsandsquigs

Revision as of 10:21, 7 April 2023

Problem 2

Let $\mathbb{R}^{+}$ be the set of positive real numbers. Find all functions $f:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}$ such that, for all $x, y \in \mathbb{R}^{+}$,\[f(xy + f(x)) = xf(y) + 2\]

Solution

First, let us plug in some special points; specifically, plugging in $x=0$ and $x=1$, respectively:

\begin{align*}     f(f(0)) &= 2 \\     f(y + f(1)) &= f(y) + 2 \end{align*}

Next, let us find the first and second derivatives of this function. First, with (2), we isolate $f(y)$ one one side

\begin{align*}    f(y) = f(y + f(1)) - 2 \end{align*}

and then take the derivative:

\begin{align*}     \dfrac{\mathrm{d}f}{\mathrm{d}y}     &=\dfrac{\mathrm{d}f}{\mathrm{d}y}\left[f(y + f(1)) - 2\right] \\     &= \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[f(y + f(1))\right] - \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[2\right] \\     &= f'(y + f(1))\cdot\dfrac{\mathrm{d}f}{\mathrm{d}y}\left[y + f(1)\right] \\     &= f'(y + f(1))\cdot(1)\\     f'(y) &= f'(y + f(1))\\ \end{align*}

The second derivative is as follows:

\begin{align*}     \dfrac{\mathrm{d}^2f}{\mathrm{d}y^2}     &= \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[\dfrac{\mathrm{d}f}{\mathrm{d}y}\right] \\     &= \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[f'(y + f(1))\right] \\     &= f''(y + f(1))\cdot\dfrac{\mathrm{d}f}{\mathrm{d}y}\left[y + f(1)\right] \\     f''(y) &= f''(y + f(1))\\ \end{align*}

For both of these derivatives, we see that the input to the function does not matter: it will return the same result regardless of input. Therefore, the functions $f'$ and $f''$ must be constants, and $f$ must be a linear equation. That means we can model $f(x)$ like so:

\begin{align}     f(x) = ax + b \end{align}

Via (1), we get the following:

\begin{align*}     f(f(0)) &= 2 \\     a(a(0) + b) + b &= 2 \\     ab + b &= 2 \end{align*}

And via (2),

\begin{align*}     f(y + f(1)) &= f(y) + 2 \\     a(y + a(1) + b) + b &= ay + b + 2 \\     ay + a^2 + ab + b &= ay + b + 2 \\     a^2 + ab &= 2 \\ \end{align*}

Setting these equations equal to each other,

\begin{align*}     ab + b &= a^2 + ab \\     b &= a^2 \\ \end{align*}

Therefore,

\begin{align*}     ab + b &= 2 \\     a^3 + a^2 &= 2 \\ \end{align*}

There are three solutions to this equation: $a = 1$, $a = -1 + i$, and $a = -1 - i$. Knowing that $b = a^2$, the respective $b$ values are $b = 1$, $b = -2i$, and $b = 2i$. Thus, $f(x)$ could be the following:

\begin{align*}     f(x) &= x + 1 \\     f(x) &= x(-1 + i) - 2i \\     f(x) &= x(-1 - i) + 2i \\ \end{align*}

$\square$

~ cogsandsquigs