Difference between revisions of "2023 USAMO Problems/Problem 1"
Martin2001 (talk | contribs) (→Solution 1) |
Martin2001 (talk | contribs) (→Solution 1) |
||
Line 1: | Line 1: | ||
In an acute triangle <math>ABC</math>, let <math>M</math> be the midpoint of <math>\overline{BC}</math>. Let <math>P</math> be the foot of the perpendicular from <math>C</math> to <math>AM</math>. Suppose that the circumcircle of triangle <math>ABP</math> intersects line <math>BC</math> at two distinct points <math>B</math> and <math>Q</math>. Let <math>N</math> be the midpoint of <math>\overline{AQ}</math>. Prove that <math>NB=NC</math>. | In an acute triangle <math>ABC</math>, let <math>M</math> be the midpoint of <math>\overline{BC}</math>. Let <math>P</math> be the foot of the perpendicular from <math>C</math> to <math>AM</math>. Suppose that the circumcircle of triangle <math>ABP</math> intersects line <math>BC</math> at two distinct points <math>B</math> and <math>Q</math>. Let <math>N</math> be the midpoint of <math>\overline{AQ}</math>. Prove that <math>NB=NC</math>. | ||
== Solution 1 == | == Solution 1 == | ||
+ | import graph; size(28.013771887739892cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-1.278031073276777,xmax=26.735740814463117,ymin=-9.456108920092317,ymax=4.7809371214468275; | ||
+ | pen qqwuqq=rgb(0.,0.39215686274509803,0.); | ||
+ | pair A=(9.638133559035012,2.2984960680144826), B=(5.734005553668605,-4.81861693653532), C=(18.84453746580399,-4.836466959731463), M=(12.289271509736299,-4.827541948133391), P=(13.089191098134414,-6.97765918185881), Q=(14.950106647313914,-4.831164682073189), X=(9.628436372158689,-4.823919214193597); | ||
+ | draw((13.41604889400778,-6.856056531808553)--(13.294446243957523,-6.529198735935188)--(12.967588448084157,-6.650801385985445)--P--cycle,linewidth(2.)+qqwuqq); | ||
+ | draw(A--B,linewidth(2.)); draw(B--C,linewidth(2.)); draw(C--A,linewidth(2.)); draw(A--P,linewidth(2.)); draw(circle((10.344923836854495,-2.718588274420166),5.066624891969315),linewidth(2.)); draw(A--Q,linewidth(2.)); draw(A--X,linewidth(2.)); draw(C--P,linewidth(2.)); draw(B--P,linewidth(2.)); draw((12.294120103174464,-1.2663343070293533)--M,linewidth(2.)); | ||
+ | dot(A,ds); label("<math>A</math>",(9.703893586940504,2.462896137778213),NE*lsf); dot(B,ds); label("<math>B</math>",(5.807611933540062,-4.655626882991359),NE*lsf); dot(C,ds); label("<math>C</math>",(18.910297493709486,-4.6720668899677325),NE*lsf); dot(M,linewidth(4.pt)+ds); label("<math>M</math>",(12.350734710136587,-4.688506896944105),NE*lsf); dot(P,linewidth(4.pt)+ds); label("<math>P</math>",(13.156295051978871,-6.842147810848988),NE*lsf); dot(Q,linewidth(4.pt)+ds); label("<math>Q</math>",(15.01401584030904,-4.7049469039204785),NE*lsf); dot((12.294120103174464,-1.2663343070293533),linewidth(4.pt)+ds); label("<math>N</math>",(12.36717471711296,-1.1374653900475058),NE*lsf); dot(X,linewidth(4.pt)+ds); label("<math>X</math>",(9.687453579964131,-4.688506896944105),NE*lsf); label("<math>\alpha = 90^\circ</math>",(13.156295051978871,-6.792827789919868),NE*lsf,qqwuqq); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
Let <math>X</math> be the foot from <math>A</math> to <math>\overline{BC}</math>. By definition, <math>\angle AXM = \angle MPC = 90^{\circ}</math>. Thus, <math>\triangle AXM \sim \triangle MPC</math>, and <math>\triangle BMP \sim \triangle AMQ</math>. | Let <math>X</math> be the foot from <math>A</math> to <math>\overline{BC}</math>. By definition, <math>\angle AXM = \angle MPC = 90^{\circ}</math>. Thus, <math>\triangle AXM \sim \triangle MPC</math>, and <math>\triangle BMP \sim \triangle AMQ</math>. | ||
Revision as of 12:37, 13 April 2023
In an acute triangle , let be the midpoint of . Let be the foot of the perpendicular from to . Suppose that the circumcircle of triangle intersects line at two distinct points and . Let be the midpoint of . Prove that .
Solution 1
import graph; size(28.013771887739892cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-1.278031073276777,xmax=26.735740814463117,ymin=-9.456108920092317,ymax=4.7809371214468275; pen qqwuqq=rgb(0.,0.39215686274509803,0.); pair A=(9.638133559035012,2.2984960680144826), B=(5.734005553668605,-4.81861693653532), C=(18.84453746580399,-4.836466959731463), M=(12.289271509736299,-4.827541948133391), P=(13.089191098134414,-6.97765918185881), Q=(14.950106647313914,-4.831164682073189), X=(9.628436372158689,-4.823919214193597); draw((13.41604889400778,-6.856056531808553)--(13.294446243957523,-6.529198735935188)--(12.967588448084157,-6.650801385985445)--P--cycle,linewidth(2.)+qqwuqq); draw(A--B,linewidth(2.)); draw(B--C,linewidth(2.)); draw(C--A,linewidth(2.)); draw(A--P,linewidth(2.)); draw(circle((10.344923836854495,-2.718588274420166),5.066624891969315),linewidth(2.)); draw(A--Q,linewidth(2.)); draw(A--X,linewidth(2.)); draw(C--P,linewidth(2.)); draw(B--P,linewidth(2.)); draw((12.294120103174464,-1.2663343070293533)--M,linewidth(2.)); dot(A,ds); label("",(9.703893586940504,2.462896137778213),NE*lsf); dot(B,ds); label("",(5.807611933540062,-4.655626882991359),NE*lsf); dot(C,ds); label("",(18.910297493709486,-4.6720668899677325),NE*lsf); dot(M,linewidth(4.pt)+ds); label("",(12.350734710136587,-4.688506896944105),NE*lsf); dot(P,linewidth(4.pt)+ds); label("",(13.156295051978871,-6.842147810848988),NE*lsf); dot(Q,linewidth(4.pt)+ds); label("",(15.01401584030904,-4.7049469039204785),NE*lsf); dot((12.294120103174464,-1.2663343070293533),linewidth(4.pt)+ds); label("",(12.36717471711296,-1.1374653900475058),NE*lsf); dot(X,linewidth(4.pt)+ds); label("",(9.687453579964131,-4.688506896944105),NE*lsf); label("$\alpha = 90^\circ$ (Error compiling LaTeX. Unknown error_msg)",(13.156295051978871,-6.792827789919868),NE*lsf,qqwuqq); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); Let be the foot from to . By definition, . Thus, , and .
From this, we have , as . Thus, is also the midpoint of .
Now, iff lies on the perpendicular bisector of . As lies on the perpendicular bisector of , which is also the perpendicular bisector of (as is also the midpoint of ), we are done. ~ Martin2001, ApraTrip