Difference between revisions of "2023 USAMO Problems/Problem 1"
Martin2001 (talk | contribs) (→Solution 1) |
Martin2001 (talk | contribs) (→Solution 1) |
||
Line 1: | Line 1: | ||
In an acute triangle <math>ABC</math>, let <math>M</math> be the midpoint of <math>\overline{BC}</math>. Let <math>P</math> be the foot of the perpendicular from <math>C</math> to <math>AM</math>. Suppose that the circumcircle of triangle <math>ABP</math> intersects line <math>BC</math> at two distinct points <math>B</math> and <math>Q</math>. Let <math>N</math> be the midpoint of <math>\overline{AQ}</math>. Prove that <math>NB=NC</math>. | In an acute triangle <math>ABC</math>, let <math>M</math> be the midpoint of <math>\overline{BC}</math>. Let <math>P</math> be the foot of the perpendicular from <math>C</math> to <math>AM</math>. Suppose that the circumcircle of triangle <math>ABP</math> intersects line <math>BC</math> at two distinct points <math>B</math> and <math>Q</math>. Let <math>N</math> be the midpoint of <math>\overline{AQ}</math>. Prove that <math>NB=NC</math>. | ||
== Solution 1 == | == Solution 1 == | ||
+ | [asy]import graph; size(28.013771887739892cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-1.278031073276777,xmax=26.735740814463117,ymin=-9.456108920092317,ymax=4.7809371214468275; | ||
+ | pen qqwuqq=rgb(0.,0.39215686274509803,0.); | ||
+ | pair A=(10.,3.), B=(6.,-5.), C=(18.,-5.), M=(12.,-5.), P=(12.352941176470589,-6.411764705882353), Q=(14.,-5.), X=(10.,-5.); | ||
+ | draw((12.691273728812305,-6.327181567796924)--(12.606690590726876,-5.988849015455207)--(12.26835803838516,-6.073432153540637)--P--cycle,linewidth(2.)+qqwuqq); | ||
+ | draw(A--B,linewidth(2.)); draw(B--C,linewidth(2.)); draw(C--A,linewidth(2.)); draw(A--P,linewidth(2.)); draw(circle((10.,-2.),5.),linewidth(2.)); draw(A--Q,linewidth(2.)); draw(A--X,linewidth(2.)); draw(C--P,linewidth(2.)); draw(B--P,linewidth(2.)); draw((12.,-1.)--M,linewidth(2.)); | ||
+ | dot(A,ds); label("<math>A</math>",(10.065573740420717,3.1698164377622584),NE*lsf); dot(B,ds); label("<math>B</math>",(6.070652045162034,-4.836466959731464),NE*lsf); dot(C,ds); label("<math>C</math>",(18.071857137914453,-4.836466959731464),NE*lsf); dot(M,linewidth(4.pt)+ds); label("<math>M</math>",(12.071254591538244,-4.86934697368421),NE*lsf); dot(P,linewidth(4.pt)+ds); label("<math>P</math>",(12.416494738042081,-6.283187573652301),NE*lsf); dot(Q,linewidth(4.pt)+ds); label("<math>Q</math>",(14.060495435679398,-4.86934697368421),NE*lsf); dot((12.,-1.),linewidth(4.pt)+ds); label("<math>N</math>",(12.071254591538244,-0.8744252784255355),NE*lsf); dot(X,linewidth(4.pt)+ds); label("<math>X</math>",(10.065573740420717,-4.86934697368421),NE*lsf); label("<math>\alpha = 90^\\circ</math>",(12.449374751994828,-6.233867552723181),NE*lsf,qqwuqq); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy] | ||
Let <math>X</math> be the foot from <math>A</math> to <math>\overline{BC}</math>. By definition, <math>\angle AXM = \angle MPC = 90^{\circ}</math>. Thus, <math>\triangle AXM \sim \triangle MPC</math>, and <math>\triangle BMP \sim \triangle AMQ</math>. | Let <math>X</math> be the foot from <math>A</math> to <math>\overline{BC}</math>. By definition, <math>\angle AXM = \angle MPC = 90^{\circ}</math>. Thus, <math>\triangle AXM \sim \triangle MPC</math>, and <math>\triangle BMP \sim \triangle AMQ</math>. | ||
Revision as of 14:27, 13 April 2023
In an acute triangle , let be the midpoint of . Let be the foot of the perpendicular from to . Suppose that the circumcircle of triangle intersects line at two distinct points and . Let be the midpoint of . Prove that .
Solution 1
[asy]import graph; size(28.013771887739892cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-1.278031073276777,xmax=26.735740814463117,ymin=-9.456108920092317,ymax=4.7809371214468275; pen qqwuqq=rgb(0.,0.39215686274509803,0.); pair A=(10.,3.), B=(6.,-5.), C=(18.,-5.), M=(12.,-5.), P=(12.352941176470589,-6.411764705882353), Q=(14.,-5.), X=(10.,-5.); draw((12.691273728812305,-6.327181567796924)--(12.606690590726876,-5.988849015455207)--(12.26835803838516,-6.073432153540637)--P--cycle,linewidth(2.)+qqwuqq); draw(A--B,linewidth(2.)); draw(B--C,linewidth(2.)); draw(C--A,linewidth(2.)); draw(A--P,linewidth(2.)); draw(circle((10.,-2.),5.),linewidth(2.)); draw(A--Q,linewidth(2.)); draw(A--X,linewidth(2.)); draw(C--P,linewidth(2.)); draw(B--P,linewidth(2.)); draw((12.,-1.)--M,linewidth(2.)); dot(A,ds); label("",(10.065573740420717,3.1698164377622584),NE*lsf); dot(B,ds); label("",(6.070652045162034,-4.836466959731464),NE*lsf); dot(C,ds); label("",(18.071857137914453,-4.836466959731464),NE*lsf); dot(M,linewidth(4.pt)+ds); label("",(12.071254591538244,-4.86934697368421),NE*lsf); dot(P,linewidth(4.pt)+ds); label("",(12.416494738042081,-6.283187573652301),NE*lsf); dot(Q,linewidth(4.pt)+ds); label("",(14.060495435679398,-4.86934697368421),NE*lsf); dot((12.,-1.),linewidth(4.pt)+ds); label("",(12.071254591538244,-0.8744252784255355),NE*lsf); dot(X,linewidth(4.pt)+ds); label("",(10.065573740420717,-4.86934697368421),NE*lsf); label("$\alpha = 90^\\circ$ (Error compiling LaTeX. Unknown error_msg)",(12.449374751994828,-6.233867552723181),NE*lsf,qqwuqq); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy] Let be the foot from to . By definition, . Thus, , and .
From this, we have , as . Thus, is also the midpoint of .
Now, iff lies on the perpendicular bisector of . As lies on the perpendicular bisector of , which is also the perpendicular bisector of (as is also the midpoint of ), we are done. ~ Martin2001, ApraTrip