Difference between revisions of "Proofs of AM-GM"

(Proof by Convexity)
(28 intermediate revisions by 11 users not shown)
Line 1: Line 1:
This pages lists some proofs of the weighted [[AM-GM]] Inequality. The inequality's statement is as follows: for all nonnegative reals <math>a_1, \dotsc, a_n</math> and nonnegative reals <math>\lambda_1, \dotsc, \lambda_n</math> such that <math>\sum_{i=1}^n \lambda_i = 1</math>, then
+
This pages lists some proofs of the weighted [[AM-GM Inequality]]. The inequality's statement is as follows: for all nonnegative reals <math>a_1, \dotsc, a_n</math> and nonnegative reals <math>\lambda_1, \dotsc, \lambda_n</math> such that <math>\sum_{i=1}^n \lambda_i = 1</math>, then
<cmath> \sum_{i=1}^n \lambda_i a_i \ge \prod_{i=1}^n a_i^{\lambda_i}, </cmath>
+
<cmath> \sum_{i=1}^n \lambda_i a_i \geq \prod_{i=1}^n a_i^{\lambda_i}, </cmath>
 
with equality if and only if <math>a_i = a_j</math> for all <math>i,j</math> such that <math>\lambda_i, \lambda_j \neq 0</math>.
 
with equality if and only if <math>a_i = a_j</math> for all <math>i,j</math> such that <math>\lambda_i, \lambda_j \neq 0</math>.
  
We first note that we may disregard any <math>a_i</math> for which <math>\lambda_i= 0</math>, as they contribute to neither side of the desired inequality. We also note that if <math>a_i= 0</math> and <math>\lambda_i \neq 0</math>, for some <math>i</math>, then the right-hand side of the inequality is zero and the left hand of the inequality is greater or equal to zero, with equality if and only if <math>a_j = 0 = a_i</math> whenever <math>\lambda_j\neq 0</math>. Thus we may henceforth assume that all <math>a_i</math> and <math>\lambda_i</math> are ''strictly positive.''
+
We first note that we may disregard any <math>a_i</math> for which <math>\lambda_i= 0</math>, as they contribute to neither side of the desired inequality. We also note that if <math>a_i= 0</math> and <math>\lambda_i \neq 0</math>, for some <math>i</math>, then the right-hand side of the inequality is zero and the left hand of the inequality is greater or equal to zero, with equality if and only if <math>a_j = 0 = a_i</math> whenever <math>\lambda_j\neq 0</math>. Thus we may henceforth assume that all <math>a_i</math> and <math>\lambda_i</math> are ''strictly positive.''
  
== Complete Proofs ==
+
== Proofs of Unweighted AM-GM ==
 +
 
 +
These proofs use the assumption that <math>\lambda_i = 1/n</math>, for all integers <math>1 \le i \le n</math>.
 +
 
 +
=== Proof by Cauchy Induction ===
 +
We use [[Cauchy Induction]], a variant of induction in which one proves a result for <math>2</math>, all powers of <math>2</math>, and then that <math>n</math> implies <math>n-1</math>.
 +
 
 +
'''Base Case''': The smallest nontrivial case of AM-GM is in two variables. By the properties of perfect squares (or by the [[Trivial Inequality]]), <math>(x-y)^2 \geq 0,</math> with equality if and only if <math>x-y=0</math>, or <math>x=y</math>. Then because <math>x</math> and <math>y</math> are nonnegative, we can perform the following manipulations: <cmath>x^2 - 2xy + y^2 > 0</cmath> <cmath>x^2 + 2xy + y^2 > 4xy</cmath> <cmath> (x+y)^2 = 4xy</cmath> <cmath>\frac{(x+y)^2}{4} \geq xy</cmath> <cmath>\frac{x+y}{2} \geq \sqrt{xy},</cmath> with equality if and only if <math>x=y</math>, just as before. This completes the proof of the base case.
 +
 
 +
'''Powers of Two''': We use induction. Suppose that AM-GM is true for <math>n</math> variables; we will then prove that the inequality is true for <math>2n</math>. Let <math>x_1, x_2, \ldots, x_{2n}</math> be any list of nonnegative reals. Then, because the two lists <math>x_1, x_2 \ldots, x_n</math> and <math>x_{n+1}, x_{n+2}, \ldots, x_{2n}</math>, each have <math>n</math> variables, <cmath>\frac{x_1 + x_2 + \cdots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \cdots x_n} \textrm{  and  } \frac{x_{n+1} + x_{n+2} + \cdots + x_{2n}}{n} \geq \sqrt[n]{x_{n+1} x_{n+2} \cdots x_{2n}}.</cmath> Adding these two inequalities together and dividing by <math>2</math> yields <cmath>\frac{x_1 + x_2 + \cdots + x_{2n}}{2n} \geq \frac{\sqrt[n]{x_1 x_2 \cdots x_n} + \sqrt[n]{x_{n+1} x_{n+2} \cdots x_{2n}}}{2}.</cmath> From here, we perform AM-GM in two variables on <math>\sqrt[n]{x_1 x_2 \cdots x_n}</math> and <math>\sqrt[n]{x_{n+1} x_{n+2} \cdots x_{2n}}</math> to get <cmath>\frac{\sqrt[n]{x_1 x_2 \cdots x_n} + \sqrt[n]{x_{n+1} x_{n+2} \cdots x_{2n}}}{2} \geq \sqrt[2n]{x_1 x_2 \ldots x_{2n}}.</cmath> Combining this inequality with the previous one yields AM-GM in <math>2n</math> variables, with one exception — equality.
 +
 
 +
For equality, note that every AM-GM application mentioned must have equality as well; thus, inequality holds if and only if all the numbers in <math>x_1, x_2, \ldots x_n</math> are the same, all the numbers in <math>x_{n+1}, x_{n+2}, \ldots x_{2n}</math> are the same, and <math>\sqrt[n]{x_1 x_2 \cdots x_n} = \sqrt[n]{x_{n+1} x_{n+2} \cdots x_{2n}}</math>. From here, it is trivial to show that this implies <math>x_1 = x_2 = \cdots x_{2n}</math>, which is the equality condition for AM-GM in <math>2n</math> variables.
 +
 
 +
This completes the induction and proves that the inequality holds for all powers of <math>2</math>.
 +
 
 +
'''Backward Step''': Assume that AM-GM holds for <math>n</math> variables. We will then use a substitution to derive AM-GM for <math>n-1</math> variables. Letting <math>x_n = \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}</math>, we have that <cmath>\frac{x_1 + x_2 + \cdots + x_{n-1} + \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}}{n} \geq \sqrt[n]{x_1 x_2 \cdots x_{n-1} \left(\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}\right)}.</cmath> Because we assumed AM-GM in <math>n</math> variables, equality holds if and only if <math>x_1 = x_2 = \cdots = x_{n-1} = \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}</math>. However, note that the last equality is implied if all the numbers of <math>x_1, x_2, \ldots, x_{n-1}</math> are the same; thus, equality holds if and only if <math>x_1 = x_2 = \cdots = x_{n-1}</math>.
 +
 
 +
We first simplify the lefthand side. Multiplying both sides of the fraction by <math>n-1</math> and combining like terms, we get that <cmath>\frac{x_1 + x_2 + \cdots + x_{n-1} + \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}}{n} = \frac{nx_1 + nx_2 + \cdots + nx_{n-1}}{n(n-1)} = \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}.</cmath> Plugging this into the earlier inequality yields <cmath>\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1} \geq \sqrt[n]{x_1 x_2 \cdots x_{n-1} \left(\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1} \right)}.</cmath> Raising both sides to the <math>n</math>th power yields <cmath>\left( \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}\right)^n \geq x_1 x_2 \cdots x_{n-1}\left(\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}\right).</cmath> From here, we divide by <math>\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}</math> and take the <math>(n-1)^{\textrm{th}}</math> root to get that <cmath>\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1} \geq \sqrt[n-1]{x_1 x_2 \cdots x_{n-1}}.</cmath> This is the inequality in <math>n-1</math> variables. Note that every step taken also preserves equality, which completes the backward step. Then by Cauchy Induction, the AM-GM inequality holds. <math>\square</math>
 +
 
 +
=== Proof by Rearrangement ===
 +
 
 +
Define the <math>n</math> sequence <math>\{ r_{i,j}\}_{i=1}^{n}</math> as <math>r_{i,j} = \sqrt[n]{a_i}</math>, for all integers <math>1 \le i,j \le n</math>. Evidently, these sequences are similarly sorted. Then by the [[Rearrangement Inequality]],
 +
<cmath> \sum_i a_i = \sum_i \prod_j r_{i,j} \ge \sum_i \prod_j r_{i+j,j} = n \prod_i \sqrt[n]{a_i} , </cmath>
 +
where we take our indices modulo <math>n</math>, with equality exactly when all the <math>r_{i,j}</math>, and therefore all the <math>a_i</math>, are equal. Dividing both sides by <math>n</math> gives the desired inequality. <math>\blacksquare</math>
 +
 
 +
=== Proof by Calculus ===
 +
 
 +
We will start the proof by considering the function <math>f(x) = \ln x - x</math>. We will now find the maximum of this function. We can do this simply using calculus. We need to find the critical points of <math>f(x)</math>, we can do that by finding <math>f'(x)</math> and setting it equal to <math>0</math>. Using the linearity of the derivative <math>f'(x) = \frac{1}{x} - 1</math>. We need <math>f'(x) = 0</math>
 +
<cmath>
 +
f'(x) = \frac{1}{x} - 1 = 0
 +
</cmath>
 +
<cmath>
 +
\frac{1}{x} = 1
 +
</cmath>
 +
<cmath>
 +
x = 1
 +
</cmath>
 +
Note that this is the only critical point of <math>f(x)</math>. We can confirm it is the maximum by finding it's second derivative and making sure it is negative. <math>f''(x) = -\frac{1}{x^2}</math> letting x = 1 we get <math>f''(1) = -\frac{1}{1} < 0</math>. Since the second derivative <math>f''(x) < 0</math>, <math>f(1)</math> is a maximum. <math>f(1) = \ln 1 - 1 = -1</math>. Now that we have that <math>f(1) = -1</math> is a maximum of <math>f(x)</math>, we can safely say that <math>\ln x - x \leq -1</math> or in other words <math>\ln x \leq x - 1</math>. We will now define a few more things and do some manipulations with them. Let <math>A = \frac{\sum_{i=1}^{n} a_i}{n}</math>, with this notice that <math>nA = \sum_{i=1}^{n} a_i</math>. This fact will come into play later. now we can do the following, let <math>x = \frac{a_i}{A}</math> and plug this into <math>\ln x < x - 1</math>, we get
 +
<cmath>
 +
\ln\left(\frac{a_1}{A}\right) \leq \frac{a_1}{A} - 1
 +
</cmath>
 +
<cmath>
 +
\ln\left(\frac{a_2}{A}\right) \leq \frac{a_2}{A} - 1
 +
</cmath>
 +
<cmath>
 +
\vdotswithin{=}
 +
</cmath>
 +
<cmath>
 +
\ln\left(\frac{a_n}{A}\right) \leq \frac{a_n}{A} - 1
 +
</cmath>
 +
Adding all these results together we get
 +
<cmath>
 +
    \ln\left(\frac{a_1}{A}\right) + \ln\left(\frac{a_2}{A}\right) + \dots + \ln\left(\frac{a_n}{A}\right) \leq \frac{a_1}{A} - 1 + \frac{a_2}{A} - 1 + \dots + \frac{a_n}{A} - 1
 +
</cmath>
 +
<cmath>
 +
    \ln\left(\frac{\prod_{i=1}^{n} a_i}{A^n}\right) \leq \frac{\sum_{i=1}^{n}a_i}{A} - n
 +
</cmath>
 +
<cmath>
 +
    \ln\left(\frac{\prod_{i=1}^{n} a_i}{A^n}\right) \leq \frac{nA}{A} - n
 +
</cmath>
 +
<cmath>
 +
    \ln\left(\frac{\prod_{i=1}^{n} a_i}{A^n}\right) \leq n - n
 +
</cmath>
 +
<cmath>
 +
    \ln\left(\frac{\prod_{i=1}^{n} a_i}{A^n}\right) \leq 0
 +
</cmath>
 +
Now exponentiating both sides we get
 +
<cmath>
 +
    e^{\ln\left(\frac{\prod_{i=1}^{n} a_i}{A^n}\right)} \leq e^{0}
 +
</cmath>
 +
<cmath>
 +
    \frac{\prod_{i=1}^{n} a_i}{A^n} \leq 1
 +
</cmath>
 +
<cmath>
 +
    \prod_{i=1}^{n} a_i \leq A^n
 +
</cmath>
 +
<cmath>
 +
    \sqrt[\leftroot{2}\uproot{3}n]{\prod_{i=1}^{n} a_i} \leq \sqrt[\leftroot{2}\uproot{3}n]{A^n}
 +
</cmath>
 +
<cmath>
 +
    \sqrt[\leftroot{2}\uproot{3}n]{\prod_{i=1}^{n} a_i} \leq A
 +
</cmath>
 +
<cmath>
 +
    \sqrt[\leftroot{2}\uproot{3}n]{\prod_{i=1}^{n} a_i} \leq \frac{\sum_{i=1}^{n} a_i}{n}
 +
</cmath>
 +
This proves the AM-GM inequality. <math>\blacksquare</math>
 +
 
 +
== Proof of Weighted AM-GM ==
  
 
=== Proof by Convexity ===
 
=== Proof by Convexity ===
  
We note that the [[function]] <math>x \mapsto \ln x</math> is strictly [[concave]]. Then by [[Jensen's Inequality]],
+
We note that the [[function]] <math>x \mapsto \ln x</math> is strictly [[concave]]. Then by [[Jensen's Inequality]],
<cmath> \ln \sum_i \lambda_i a_i \ge \sum_i \lambda_i \ln a_i = ln \prod_i a_i^{\lambda_i} , </cmath>
+
<cmath> \ln \sum_i \lambda_i a_i \ge \sum_i \lambda_i \ln a_i = \ln \prod_i a_i^{\lambda_i} , </cmath>
 
with equality if and only if all the <math>a_i</math> are equal.
 
with equality if and only if all the <math>a_i</math> are equal.
 
Since <math>x \mapsto \ln x</math> is a strictly increasing function, it then follows that
 
Since <math>x \mapsto \ln x</math> is a strictly increasing function, it then follows that
 
<cmath> \sum_i \lambda_i a_i \ge \prod_i a_i^{\lambda_i}, </cmath>
 
<cmath> \sum_i \lambda_i a_i \ge \prod_i a_i^{\lambda_i}, </cmath>
with equality if and only if all the <math>a_i</math> are equal, as desired. <math>\blacksquare</math>
+
with equality if and only if all the <math>a_i</math> are equal, as desired. <math>\blacksquare</math>
  
 
=== Alternate Proof by Convexity ===
 
=== Alternate Proof by Convexity ===
Line 20: Line 107:
 
''This proof is due to [[G. Pólya]].''
 
''This proof is due to [[G. Pólya]].''
  
Note that the function <math>f:x \mapsto e^x</math> is strictly convex. Let <math>g(x)</math> be the line tangent to <math>f</math> at <math>(0,1)</math>; then <math>g(x) = x+1</math>. Since <math>f</math> is also a [[continuous]], [[differentiable]] function, it follows that <math>f(x) \ge g(x)</math> for all <math>x</math>, with equality exactly when <math>x=0</math>, i.e.,
+
Note that the function <math>f:x \mapsto e^x</math> is strictly convex. Let <math>g(x)</math> be the line tangent to <math>f</math> at <math>(0,1)</math>; then <math>g(x) = x+1</math>. Since <math>f</math> is also a [[continuous]], [[differentiable]] function, it follows that <math>f(x) \ge g(x)</math> for all <math>x</math>, with equality exactly when <math>x=0</math>, i.e.,
 
<cmath> 1+x \le e^x, </cmath>
 
<cmath> 1+x \le e^x, </cmath>
 
with equality exactly when <math>x=0</math>.
 
with equality exactly when <math>x=0</math>.
Line 26: Line 113:
 
Now, set
 
Now, set
 
<cmath> r_i = a_i/\biggl( \sum_{j=1}^n \lambda_j a_j \biggr) - 1, </cmath>
 
<cmath> r_i = a_i/\biggl( \sum_{j=1}^n \lambda_j a_j \biggr) - 1, </cmath>
for all integers <math>1\le i \le n</math>. Our earlier bound tells us that
+
for all integers <math>1\le i \le n</math>. Our earlier bound tells us that
 
<cmath> r_i +1 \le \exp(r_i), </cmath>
 
<cmath> r_i +1 \le \exp(r_i), </cmath>
 
so
 
so
 
<cmath> (r_i +1)^{\lambda_i} \le \exp(\lambda_i r_i) .</cmath>
 
<cmath> (r_i +1)^{\lambda_i} \le \exp(\lambda_i r_i) .</cmath>
 
Multiplying <math>n</math> such inequalities gives us
 
Multiplying <math>n</math> such inequalities gives us
<cmath> \frac{\prod_{i=1}^n a_i^{\lambda_i}}{ \sum_{i=1}^n \lambda_i r_i} = \prod_{i=1}^n (r_i + 1)^{\lambda_{i}} \le \prod_{i=1}^n \exp \lambda_i r_i = \exp \sum_{i=1}^n \lambda_i a_i / \sum_{j=1}^n \lambda_j a_j - \lambda_i = \exp 0 = 1 ,</cmath>
 
so
 
<cmath> \prod_{i=1}^n a_i^{\lambda_i} \le \sum_{i=1}^n \lambda_i r_i , </cmath>
 
as desired.  Equality holds when <math>r_i</math> is always equal to zero, i.e., when <math>a_i = a_j</math> for all <math>i,j</math> such that <math>\lambda_i , \lambda_j \neq 0</math>.  <math>\blacksquare</math>
 
  
== Proofs of Unweighted AM-GM ==
+
<cmath>\prod_{i=1}^n (r_i + 1)^{\lambda_{i}} \le \prod_{i=1}^n \exp \lambda_i r_i </cmath>
 +
 
 +
Evaluating the left hand side:
  
These proofs use the assumption that <math>\lambda_i = 1/n</math>, for all integers <math>1 \le i \le n</math>.
+
<cmath>\prod_{i=1}^n (r_i + 1)^{\lambda_{i}} = \frac{\prod_{i=1}^n a_i^{\lambda_i} }{ (\sum_{j=1}^n \lambda_j a_j)^{\sum_{j=1}^n \lambda_i} } = \frac{\prod_{i=1}^n a_i^{\lambda_i} }{ \sum_{j=1}^n \lambda_j a_j } ,</cmath>
  
=== Proof by Rearrangement ===
+
for
  
Define the <math>n</math> sequence <math>\{ r_{ij}\}_{i=1}^{n}</math> as <math>r_{ij} = \sqrt[n]{a_i}</math>, for all integers <math>1 \le i,j \le n</math>.  Evidently these sequences are similarly sorted. Then by the [[Rearrangement Inequality]],
+
<cmath> \sum_{j=1}^n \lambda_i = 1 .</cmath>
<cmath> \sum_i a_i = \sum_i \prod_j r_{ij} \ge \sum_i \prod_j r_{i,i+j} = n \prod_i \sqrt[n]{a_i} , </cmath>
 
where we take our indices modulo <math>n</math>, with equality exactly when all the <math>r_{ij}</math>, and therefore all the <math>a_i</math>, are equal.  Dividing both sides by <math>n</math> gives the desired inequality.  <math>\blacksquare</math>
 
  
=== Proof by [[Cauchy Induction]] ===
+
Evaluating the right hand side:
  
We first prove that the inequality holds for two variables.  Note that <math>(\sqrt{a}, \sqrt{b}), (\sqrt{a}, \sqrt{b})</math> are similarly sorted sequences.  Then by the Rearrangement Inequality,
+
<cmath> \prod_{i=1}^n \exp \lambda_i r_i = \prod_{i=1}^n \exp \left(\frac{a_i \lambda_i}{ \sum_{i=1}^n \lambda_j a_j} - \lambda_i\right) = \exp \left(\frac{\sum_{i=1}^n a_i \lambda_i}{ \sum_{i=1}^n \lambda_j a_j} - \sum_{i=1}^n \lambda_i\right) = \exp 0 = 1 .</cmath>
<cmath> \sqrt{ab} = \frac{ \sqrt{a} \sqrt{b} + \sqrt{b} \sqrt{a}}{2} \le \frac{ \sqrt{a} \sqrt{a} + \sqrt{b} \sqrt{b}}{2} = \frac{a+b}{2} , </cmath>
 
with equality exactly when <math>a=b</math>.
 
  
We next prove that if the inequality holds for <math>n</math> variables (with equality when all are equal to zero), than it holds for <math>2n</math> variables (with equality when all are equal to zero).  Indeed, suppose the inequality holds for <math>n</math> variables.  Let <math>A_n, A'_n, A_{2n}</math> denote the arithmetic means of <math>(a_1, \dotsc, a_n)</math>, <math>(a_{n+1}, \dotsc, a_{2n})</math>, <math>(a_1, \dotsc, a_{2n})</math>, respectively; let <math>G_n, G'_n, G_{2n}</math> denote their respective geometric means.  Then
+
Substituting the results for the left and right sides:
<cmath> G_{2n} = \sqrt{G_n G'_n} \le \frac{G_n + G'_n}{2} \le \frac{A_n + A'_n}{2} = A_2n, </cmath>
 
with equality when all the numbers <math>a_1, \dotsc, a_{2n}</math> are equal, as desired.
 
  
These two results show by induction that the theorem holds for <math>n=2^k</math>, for all integers <math>k</math>.  In particular, for every integer <math>n</math>, there is an integer <math>N >n</math> such that the theorem holds for <math>N</math> variables.
+
<cmath> \frac{\prod_{i=1}^n a_i^{\lambda_i} }{ \sum_{j=1}^n \lambda_j a_j } \le 1 </cmath>
  
Finally, we show that if <math>N>n</math> and the theorem holds for <math>N</math> variables, then it holds for <math>n</math> variables <math>a_1, \dotsc, a_n</math> with arithmetic mean <math>A_n</math> and geometric mean <math>G_n</math>.  Indeed, set <math>b_k = a_k</math> for <math>1\le k \le n</math>, and let <math>b_k = A_k</math> for <math>n < k \le N</math>.  Then
+
<cmath> \prod_{i=1}^n a_i^{\lambda_i} \le \sum_{j=1}^n \lambda_j a_j = \sum_{i=1}^n \lambda_i a_i , </cmath>
<cmath> G_k^{n/N} \cdot A_k^{(N-n)/N} = \prod_{i=1}^N b_i^{1/N} \le \sum_{i=1}^N b_i/N = A_n . </cmath>
 
It follows that <math>G_k^{n/N} \le A_k^{n/N}</math>, or <math>G_n \le A_n</math>, with equality exactly when all the <math>a_i</math> are equal to <math>A_k</math>.
 
  
The last two results show that for all positive integers <math>n</math>, the theorem holds for <math>n</math> variables. Therefore the theorem is true.  <math>\blacksquare</math>
+
as desired. <math>\blacksquare</math>
  
[[Category:Inequality]]
+
[[Category:Algebra]]
 +
[[Category:Inequalities]]

Revision as of 06:55, 11 May 2023

This pages lists some proofs of the weighted AM-GM Inequality. The inequality's statement is as follows: for all nonnegative reals $a_1, \dotsc, a_n$ and nonnegative reals $\lambda_1, \dotsc, \lambda_n$ such that $\sum_{i=1}^n \lambda_i = 1$, then \[\sum_{i=1}^n \lambda_i a_i \geq \prod_{i=1}^n a_i^{\lambda_i},\] with equality if and only if $a_i = a_j$ for all $i,j$ such that $\lambda_i, \lambda_j \neq 0$.

We first note that we may disregard any $a_i$ for which $\lambda_i= 0$, as they contribute to neither side of the desired inequality. We also note that if $a_i= 0$ and $\lambda_i \neq 0$, for some $i$, then the right-hand side of the inequality is zero and the left hand of the inequality is greater or equal to zero, with equality if and only if $a_j = 0 = a_i$ whenever $\lambda_j\neq 0$. Thus we may henceforth assume that all $a_i$ and $\lambda_i$ are strictly positive.

Proofs of Unweighted AM-GM

These proofs use the assumption that $\lambda_i = 1/n$, for all integers $1 \le i \le n$.

Proof by Cauchy Induction

We use Cauchy Induction, a variant of induction in which one proves a result for $2$, all powers of $2$, and then that $n$ implies $n-1$.

Base Case: The smallest nontrivial case of AM-GM is in two variables. By the properties of perfect squares (or by the Trivial Inequality), $(x-y)^2 \geq 0,$ with equality if and only if $x-y=0$, or $x=y$. Then because $x$ and $y$ are nonnegative, we can perform the following manipulations: \[x^2 - 2xy + y^2 > 0\] \[x^2 + 2xy + y^2 > 4xy\] \[(x+y)^2 = 4xy\] \[\frac{(x+y)^2}{4} \geq xy\] \[\frac{x+y}{2} \geq \sqrt{xy},\] with equality if and only if $x=y$, just as before. This completes the proof of the base case.

Powers of Two: We use induction. Suppose that AM-GM is true for $n$ variables; we will then prove that the inequality is true for $2n$. Let $x_1, x_2, \ldots, x_{2n}$ be any list of nonnegative reals. Then, because the two lists $x_1, x_2 \ldots, x_n$ and $x_{n+1}, x_{n+2}, \ldots, x_{2n}$, each have $n$ variables, \[\frac{x_1 + x_2 + \cdots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \cdots x_n} \textrm{  and  } \frac{x_{n+1} + x_{n+2} + \cdots + x_{2n}}{n} \geq \sqrt[n]{x_{n+1} x_{n+2} \cdots x_{2n}}.\] Adding these two inequalities together and dividing by $2$ yields \[\frac{x_1 + x_2 + \cdots + x_{2n}}{2n} \geq \frac{\sqrt[n]{x_1 x_2 \cdots x_n} + \sqrt[n]{x_{n+1} x_{n+2} \cdots x_{2n}}}{2}.\] From here, we perform AM-GM in two variables on $\sqrt[n]{x_1 x_2 \cdots x_n}$ and $\sqrt[n]{x_{n+1} x_{n+2} \cdots x_{2n}}$ to get \[\frac{\sqrt[n]{x_1 x_2 \cdots x_n} + \sqrt[n]{x_{n+1} x_{n+2} \cdots x_{2n}}}{2} \geq \sqrt[2n]{x_1 x_2 \ldots x_{2n}}.\] Combining this inequality with the previous one yields AM-GM in $2n$ variables, with one exception — equality.

For equality, note that every AM-GM application mentioned must have equality as well; thus, inequality holds if and only if all the numbers in $x_1, x_2, \ldots x_n$ are the same, all the numbers in $x_{n+1}, x_{n+2}, \ldots x_{2n}$ are the same, and $\sqrt[n]{x_1 x_2 \cdots x_n} = \sqrt[n]{x_{n+1} x_{n+2} \cdots x_{2n}}$. From here, it is trivial to show that this implies $x_1 = x_2 = \cdots x_{2n}$, which is the equality condition for AM-GM in $2n$ variables.

This completes the induction and proves that the inequality holds for all powers of $2$.

Backward Step: Assume that AM-GM holds for $n$ variables. We will then use a substitution to derive AM-GM for $n-1$ variables. Letting $x_n = \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}$, we have that \[\frac{x_1 + x_2 + \cdots + x_{n-1} + \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}}{n} \geq \sqrt[n]{x_1 x_2 \cdots x_{n-1} \left(\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}\right)}.\] Because we assumed AM-GM in $n$ variables, equality holds if and only if $x_1 = x_2 = \cdots = x_{n-1} = \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}$. However, note that the last equality is implied if all the numbers of $x_1, x_2, \ldots, x_{n-1}$ are the same; thus, equality holds if and only if $x_1 = x_2 = \cdots = x_{n-1}$.

We first simplify the lefthand side. Multiplying both sides of the fraction by $n-1$ and combining like terms, we get that \[\frac{x_1 + x_2 + \cdots + x_{n-1} + \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}}{n} = \frac{nx_1 + nx_2 + \cdots + nx_{n-1}}{n(n-1)} = \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}.\] Plugging this into the earlier inequality yields \[\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1} \geq \sqrt[n]{x_1 x_2 \cdots x_{n-1} \left(\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1} \right)}.\] Raising both sides to the $n$th power yields \[\left( \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}\right)^n \geq x_1 x_2 \cdots x_{n-1}\left(\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}\right).\] From here, we divide by $\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}$ and take the $(n-1)^{\textrm{th}}$ root to get that \[\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1} \geq \sqrt[n-1]{x_1 x_2 \cdots x_{n-1}}.\] This is the inequality in $n-1$ variables. Note that every step taken also preserves equality, which completes the backward step. Then by Cauchy Induction, the AM-GM inequality holds. $\square$

Proof by Rearrangement

Define the $n$ sequence $\{ r_{i,j}\}_{i=1}^{n}$ as $r_{i,j} = \sqrt[n]{a_i}$, for all integers $1 \le i,j \le n$. Evidently, these sequences are similarly sorted. Then by the Rearrangement Inequality, \[\sum_i a_i = \sum_i \prod_j r_{i,j} \ge \sum_i \prod_j r_{i+j,j} = n \prod_i \sqrt[n]{a_i} ,\] where we take our indices modulo $n$, with equality exactly when all the $r_{i,j}$, and therefore all the $a_i$, are equal. Dividing both sides by $n$ gives the desired inequality. $\blacksquare$

Proof by Calculus

We will start the proof by considering the function $f(x) = \ln x - x$. We will now find the maximum of this function. We can do this simply using calculus. We need to find the critical points of $f(x)$, we can do that by finding $f'(x)$ and setting it equal to $0$. Using the linearity of the derivative $f'(x) = \frac{1}{x} - 1$. We need $f'(x) = 0$ \[f'(x) = \frac{1}{x} - 1 = 0\] \[\frac{1}{x} = 1\] \[x = 1\] Note that this is the only critical point of $f(x)$. We can confirm it is the maximum by finding it's second derivative and making sure it is negative. $f''(x) = -\frac{1}{x^2}$ letting x = 1 we get $f''(1) = -\frac{1}{1} < 0$. Since the second derivative $f''(x) < 0$, $f(1)$ is a maximum. $f(1) = \ln 1 - 1 = -1$. Now that we have that $f(1) = -1$ is a maximum of $f(x)$, we can safely say that $\ln x - x \leq -1$ or in other words $\ln x \leq x - 1$. We will now define a few more things and do some manipulations with them. Let $A = \frac{\sum_{i=1}^{n} a_i}{n}$, with this notice that $nA = \sum_{i=1}^{n} a_i$. This fact will come into play later. now we can do the following, let $x = \frac{a_i}{A}$ and plug this into $\ln x < x - 1$, we get \[\ln\left(\frac{a_1}{A}\right) \leq \frac{a_1}{A} - 1\] \[\ln\left(\frac{a_2}{A}\right) \leq \frac{a_2}{A} - 1\] \[\vdotswithin{=}\] \[\ln\left(\frac{a_n}{A}\right) \leq \frac{a_n}{A} - 1\] Adding all these results together we get \[\ln\left(\frac{a_1}{A}\right) + \ln\left(\frac{a_2}{A}\right) + \dots + \ln\left(\frac{a_n}{A}\right) \leq \frac{a_1}{A} - 1 + \frac{a_2}{A} - 1 + \dots + \frac{a_n}{A} - 1\] \[\ln\left(\frac{\prod_{i=1}^{n} a_i}{A^n}\right) \leq \frac{\sum_{i=1}^{n}a_i}{A} - n\] \[\ln\left(\frac{\prod_{i=1}^{n} a_i}{A^n}\right) \leq \frac{nA}{A} - n\] \[\ln\left(\frac{\prod_{i=1}^{n} a_i}{A^n}\right) \leq n - n\] \[\ln\left(\frac{\prod_{i=1}^{n} a_i}{A^n}\right) \leq 0\] Now exponentiating both sides we get \[e^{\ln\left(\frac{\prod_{i=1}^{n} a_i}{A^n}\right)} \leq e^{0}\] \[\frac{\prod_{i=1}^{n} a_i}{A^n} \leq 1\] \[\prod_{i=1}^{n} a_i \leq A^n\] \[\sqrt[\leftroot{2}\uproot{3}n]{\prod_{i=1}^{n} a_i} \leq \sqrt[\leftroot{2}\uproot{3}n]{A^n}\] \[\sqrt[\leftroot{2}\uproot{3}n]{\prod_{i=1}^{n} a_i} \leq A\] \[\sqrt[\leftroot{2}\uproot{3}n]{\prod_{i=1}^{n} a_i} \leq \frac{\sum_{i=1}^{n} a_i}{n}\] This proves the AM-GM inequality. $\blacksquare$

Proof of Weighted AM-GM

Proof by Convexity

We note that the function $x \mapsto \ln x$ is strictly concave. Then by Jensen's Inequality, \[\ln \sum_i \lambda_i a_i \ge \sum_i \lambda_i \ln a_i = \ln \prod_i a_i^{\lambda_i} ,\] with equality if and only if all the $a_i$ are equal. Since $x \mapsto \ln x$ is a strictly increasing function, it then follows that \[\sum_i \lambda_i a_i \ge \prod_i a_i^{\lambda_i},\] with equality if and only if all the $a_i$ are equal, as desired. $\blacksquare$

Alternate Proof by Convexity

This proof is due to G. Pólya.

Note that the function $f:x \mapsto e^x$ is strictly convex. Let $g(x)$ be the line tangent to $f$ at $(0,1)$; then $g(x) = x+1$. Since $f$ is also a continuous, differentiable function, it follows that $f(x) \ge g(x)$ for all $x$, with equality exactly when $x=0$, i.e., \[1+x \le e^x,\] with equality exactly when $x=0$.

Now, set \[r_i = a_i/\biggl( \sum_{j=1}^n \lambda_j a_j \biggr) - 1,\] for all integers $1\le i \le n$. Our earlier bound tells us that \[r_i +1 \le \exp(r_i),\] so \[(r_i +1)^{\lambda_i} \le \exp(\lambda_i r_i) .\] Multiplying $n$ such inequalities gives us

\[\prod_{i=1}^n (r_i + 1)^{\lambda_{i}} \le \prod_{i=1}^n \exp \lambda_i r_i\]

Evaluating the left hand side:

\[\prod_{i=1}^n (r_i + 1)^{\lambda_{i}} = \frac{\prod_{i=1}^n a_i^{\lambda_i} }{ (\sum_{j=1}^n \lambda_j a_j)^{\sum_{j=1}^n \lambda_i} } = \frac{\prod_{i=1}^n a_i^{\lambda_i} }{ \sum_{j=1}^n \lambda_j a_j } ,\]

for

\[\sum_{j=1}^n \lambda_i = 1 .\]

Evaluating the right hand side:

\[\prod_{i=1}^n \exp \lambda_i r_i = \prod_{i=1}^n \exp \left(\frac{a_i \lambda_i}{ \sum_{i=1}^n \lambda_j a_j} - \lambda_i\right) = \exp \left(\frac{\sum_{i=1}^n a_i \lambda_i}{ \sum_{i=1}^n \lambda_j a_j} - \sum_{i=1}^n \lambda_i\right) = \exp 0 = 1 .\]

Substituting the results for the left and right sides:

\[\frac{\prod_{i=1}^n a_i^{\lambda_i} }{ \sum_{j=1}^n \lambda_j a_j } \le 1\]

\[\prod_{i=1}^n a_i^{\lambda_i} \le \sum_{j=1}^n \lambda_j a_j = \sum_{i=1}^n \lambda_i a_i ,\]

as desired. $\blacksquare$