Difference between revisions of "2014 AMC 12A Problems/Problem 19"
m (→Solution 3: Formatting) |
|||
Line 22: | Line 22: | ||
iron | iron | ||
+ | |||
+ | ==Video Solution by SpreadTheMathLove== | ||
+ | https://www.youtube.com/watch?v=BoPnuYKBq30 | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2014|ab=A|num-b=18|num-a=20}} | {{AMC12 box|year=2014|ab=A|num-b=18|num-a=20}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 13:30, 18 June 2023
Contents
Problem
There are exactly distinct rational numbers such that and has at least one integer solution for . What is ?
Solution 1
Factor the quadratic into where is our integer solution. Then, which takes rational values between and when , excluding . This leads to an answer of .
Solution 2
Solve for so Note that can be any integer in the range so is rational with . Hence, there are
Solution 3
Plug in to find the upper limit. You will find the limit to be a number from and one that is just below All the integer values from to can be attainable through some value of . Since the question asks for the absolute value of , we see that the answer is
iron
Video Solution by SpreadTheMathLove
https://www.youtube.com/watch?v=BoPnuYKBq30
See Also
2014 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.