|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| |
− | Circle <math>\omega</math> has chord <math>AB</math> of length <math>18</math>. Point <math>X</math> lies on chord <math>AB</math> such that <math>AX = 4.</math> Circle <math>\omega_1</math> with radius <math>r_1</math> and <math>\omega_2</math> with radius <math>r_2</math> lie on two different sides of <math>AB.</math> Both <math>\omega_1</math> and <math>\omega_2</math> are tangent to <math>AB</math> at <math>X</math> and <math>\omega.</math> If the sum of the maximum and minimum values of <math>r_1r_2</math> is <math>\frac{m}{n},</math> find <math>m+n</math>.
| |
| | | |
− | ==Solution==
| |
− | Let <math>r</math> be the radius of <math>\omega</math> and let <math>C</math> be the midpoint of <math>AB</math> and let <math>OC = x.</math> Note that <math>r^2 - x^2 = 81</math>. WLOG assume that <math>r_2\geq r_1.</math>
| |
− |
| |
− | Since <math>AX = 4</math> and <math>AB = 18,</math> we have <math>XC = \frac{AB}{2}-AX = 5.</math>
| |
− |
| |
− | By the Pythagorean Theorem, we have
| |
− | <cmath>(O_1X+CO)^2+(XC)^2 = (OO_1)^2</cmath>
| |
− | <cmath>(O_2X-CO)^2+(XC)^2 = (OO_2)^2.</cmath>
| |
− | which is the same as
| |
− | <cmath>(r_1+x)^2+25 = (r-r_1)^2</cmath>
| |
− | <cmath>(r_2-x)^2+25 =(r-r_2)^2.</cmath>
| |
− | \
| |
− | Solving for <math>r_1</math> and <math>r_2,</math> we have that
| |
− | <cmath>r_1 = \frac{r^2-x^2-25}{2(r+x)}</cmath>
| |
− | <cmath>r_2 = \frac{r^2-x^2-25}{2(r-x)}.</cmath>
| |
− | Thus,
| |
− | <cmath>
| |
− | r_1r_2 = \frac{((r^2-x^2)-5^2)^2}{4(r^2-x^2)} = \frac{784}{81},
| |
− | </cmath>
| |
− | meaning that the minimum and maximum value of <math>r_1r_2</math> are both <math>\frac{784}{81}</math> so the answer is <math>\boxed{1649}.</math>
| |
− |
| |
− | <center>
| |
− | <asy>
| |
− | size(7cm);
| |
− | point a, b, c, x, o, t, o1, o2;
| |
− | a = (0,0);
| |
− | b = (18,0);
| |
− | c = (9,0);
| |
− | x = (4,0);
| |
− | o = (9, -3);
| |
− |
| |
− | circle cir = circle(o, abs(a-o));
| |
− | t = intersectionpoints(cir, line(x,o))[1];
| |
− |
| |
− | point[] o1o2 = intersectionpoints(ellipse(x, o, (x+t)/2), line(x, x+(0,1)));
| |
− |
| |
− | o1 = o1o2[0];
| |
− | o2 = o1o2[1];
| |
− |
| |
− | draw(o1--o2, red);
| |
− | draw(a--b, blue);
| |
− | draw(c--o, blue);
| |
− |
| |
− | filldraw(cir, opacity(0.2)+lightcyan, blue);
| |
− | // draw(ellipse(x, o, (x+t)/2));
| |
− |
| |
− | filldraw(circle(o1, abs(o1-x)), opacity(0.2)+palered, lightred);
| |
− | filldraw(circle(o2, abs(o2-x)), opacity(0.2)+palered, lightred);
| |
− |
| |
− | dot("$A$", a, dir(145));
| |
− | dot("$B$", b, dir(30));
| |
− | dot("$C$", c, dir(90));
| |
− | dot("$X$", x, dir(60));
| |
− | dot("$O$", o, dir(45));
| |
− | dot("$O_1$", o1);
| |
− | dot("$O_2$", o2);
| |
− | </asy>
| |
− | </center>
| |