Difference between revisions of "Brahmagupta's Formula"
RoFlLoLcOpT (talk | contribs) |
Bobjoebilly (talk | contribs) |
||
(12 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
− | '''Brahmagupta's Formula''' is a [[formula]] for determining the [[area]] of a [[cyclic quadrilateral]] given only the four side [[length]]s | + | '''Brahmagupta's Formula''' is a [[formula]] for determining the [[area]] of a [[cyclic quadrilateral]] given only the four side [[length]]s, given as follows: <cmath>[ABCD] = \sqrt{(s-a)(s-b)(s-c)(s-d)}</cmath> where <math>a</math>, <math>b</math>, <math>c</math>, <math>d</math> are the four side lengths and <math>s = \frac{a+b+c+d}{2}</math>. |
− | + | ==Proofs== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
If we draw <math>AC</math>, we find that <math>[ABCD]=\frac{ab\sin B}{2}+\frac{cd\sin D}{2}=\frac{ab\sin B+cd\sin D}{2}</math>. Since <math>B+D=180^\circ</math>, <math>\sin B=\sin D</math>. Hence, <math>[ABCD]=\frac{\sin B(ab+cd)}{2}</math>. Multiplying by 2 and squaring, we get: | If we draw <math>AC</math>, we find that <math>[ABCD]=\frac{ab\sin B}{2}+\frac{cd\sin D}{2}=\frac{ab\sin B+cd\sin D}{2}</math>. Since <math>B+D=180^\circ</math>, <math>\sin B=\sin D</math>. Hence, <math>[ABCD]=\frac{\sin B(ab+cd)}{2}</math>. Multiplying by 2 and squaring, we get: | ||
− | <cmath>4[ABCD] | + | <cmath>4[ABCD]^2=\sin^2 B(ab+cd)^2</cmath> |
Substituting <math>\sin^2B=1-\cos^2B</math> results in | Substituting <math>\sin^2B=1-\cos^2B</math> results in | ||
<cmath>4[ABCD]^2=(1-\cos^2B)(ab+cd)^2=(ab+cd)^2-\cos^2B(ab+cd)^2</cmath> | <cmath>4[ABCD]^2=(1-\cos^2B)(ab+cd)^2=(ab+cd)^2-\cos^2B(ab+cd)^2</cmath> | ||
− | By the Law of Cosines, <math>a^2+b^2-2ab\cos B=c^2+d^2-2cd\cos D</math>. <math>\cos B=-\cos D</math>, so a little rearranging gives | + | By the [[Law of Cosines]], <math>a^2+b^2-2ab\cos B=c^2+d^2-2cd\cos D</math>. <math>\cos B=-\cos D</math>, so a little rearranging gives |
<cmath>2\cos B(ab+cd)=a^2+b^2-c^2-d^2</cmath> | <cmath>2\cos B(ab+cd)=a^2+b^2-c^2-d^2</cmath> | ||
<cmath>4[ABCD]^2=(ab+cd)^2-\frac{1}{4}(a^2+b^2-c^2-d^2)^2</cmath> | <cmath>4[ABCD]^2=(ab+cd)^2-\frac{1}{4}(a^2+b^2-c^2-d^2)^2</cmath> | ||
Line 22: | Line 12: | ||
<cmath>16[ABCD]^2=(a^2+2ab+b^2-c^2+2cd-d^2)(-a^2+2ab-b^2+c^2+2cd+d^2)</cmath> | <cmath>16[ABCD]^2=(a^2+2ab+b^2-c^2+2cd-d^2)(-a^2+2ab-b^2+c^2+2cd+d^2)</cmath> | ||
<cmath>16[ABCD]^2=((a+b)^2-(c-d)^2)((c+d)^2-(a-b)^2)</cmath> | <cmath>16[ABCD]^2=((a+b)^2-(c-d)^2)((c+d)^2-(a-b)^2)</cmath> | ||
− | <cmath>16[ABCD]^2=(a+b+c-d)(a+b-c+d)(c+d+a-b)(c+d-b | + | <cmath>16[ABCD]^2=(a+b+c-d)(a+b-c+d)(c+d+a-b)(c+d-a+b)</cmath> |
<cmath>16[ABCD]^2=16(s-a)(s-b)(s-c)(s-d)</cmath> | <cmath>16[ABCD]^2=16(s-a)(s-b)(s-c)(s-d)</cmath> | ||
<cmath>[ABCD]=\sqrt{(s-a)(s-b)(s-c)(s-d)}</cmath> | <cmath>[ABCD]=\sqrt{(s-a)(s-b)(s-c)(s-d)}</cmath> | ||
Line 28: | Line 18: | ||
== Similar formulas == | == Similar formulas == | ||
− | [[Bretschneider's formula]] gives a formula for the area of a non-cyclic quadrilateral given only the side lengths; applying [[Ptolemy's Theorem]] to Bretschneider's | + | [[Bretschneider's formula]] gives a formula for the area of a non-cyclic quadrilateral given only the side lengths; applying [[Ptolemy's Theorem]] to Bretschneider's amnado |
Brahmagupta's formula reduces to [[Heron's formula]] by setting the side length <math>{d}=0</math>. | Brahmagupta's formula reduces to [[Heron's formula]] by setting the side length <math>{d}=0</math>. | ||
A similar formula which Brahmagupta derived for the area of a general quadrilateral is | A similar formula which Brahmagupta derived for the area of a general quadrilateral is | ||
− | <cmath>[ABCD]^2=(s-a)(s-b)(s-c)(s-d)-abcd\cos{\frac{B+D}{2}}</cmath> | + | <cmath>[ABCD]^2=(s-a)(s-b)(s-c)(s-d)-abcd\cos^2\left({\frac{B+D}{2}}\right)</cmath> |
− | <cmath>[ABCD]=\sqrt{(s-a)(s-b)(s-c)(s-d)-abcd\cos{\frac{B+D}{2}}}</cmath> | + | <cmath>[ABCD]=\sqrt{(s-a)(s-b)(s-c)(s-d)-abcd\cos^2\left({\frac{B+D}{2}}\right)}</cmath> |
where <math>s=\frac{a+b+c+d}{2}</math> is the [[semiperimeter]] of the quadrilateral. What happens when the quadrilateral is cyclic? | where <math>s=\frac{a+b+c+d}{2}</math> is the [[semiperimeter]] of the quadrilateral. What happens when the quadrilateral is cyclic? | ||
+ | |||
+ | == Problems == | ||
+ | === Intermediate === | ||
+ | *<math>ABCD</math> is a cyclic quadrilateral that has an inscribed circle. The diagonals of <math>ABCD</math> intersect at <math>P</math>. If <math>AB = 1, CD = 4,</math> and <math>BP : DP = 3 : 8,</math> then the area of the inscribed circle of <math>ABCD</math> can be expressed as <math>\frac{p\pi}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Determine <math>p + q</math>. ([[Mock AIME 3 Pre 2005 Problems/Problem 7|Source]]) | ||
+ | |||
+ | |||
[[Category:Geometry]] | [[Category:Geometry]] | ||
− | |||
[[Category:Theorems]] | [[Category:Theorems]] |
Revision as of 17:31, 3 July 2023
Brahmagupta's Formula is a formula for determining the area of a cyclic quadrilateral given only the four side lengths, given as follows: where , , , are the four side lengths and .
Proofs
If we draw , we find that . Since , . Hence, . Multiplying by 2 and squaring, we get: Substituting results in By the Law of Cosines, . , so a little rearranging gives
Similar formulas
Bretschneider's formula gives a formula for the area of a non-cyclic quadrilateral given only the side lengths; applying Ptolemy's Theorem to Bretschneider's amnado
Brahmagupta's formula reduces to Heron's formula by setting the side length .
A similar formula which Brahmagupta derived for the area of a general quadrilateral is where is the semiperimeter of the quadrilateral. What happens when the quadrilateral is cyclic?
Problems
Intermediate
- is a cyclic quadrilateral that has an inscribed circle. The diagonals of intersect at . If and then the area of the inscribed circle of can be expressed as , where and are relatively prime positive integers. Determine . (Source)