Difference between revisions of "2007 IMO Shortlist Problems/A2"

(Problem)
(Tag: Blanking)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
== Problem ==
 +
(''Bulgaria'')
 +
Consider those functions <math>f:\mathbb{N}\to\mathbb{N}</math> which satisfy the condition
 +
<center><math>f(m+n)\ge f(m)+f(f(n))-1</math></center>
 +
for all <math>m, n\in\mathbb{N}</math>. Find all possible values of <math>f(2007).</math>
  
 +
(<math>\mathbb{N}</math> denotes the set of all integers.)
 +
 +
== Solution ==

Latest revision as of 07:30, 3 August 2023

Problem

(Bulgaria) Consider those functions $f:\mathbb{N}\to\mathbb{N}$ which satisfy the condition

$f(m+n)\ge f(m)+f(f(n))-1$

for all $m, n\in\mathbb{N}$. Find all possible values of $f(2007).$

($\mathbb{N}$ denotes the set of all integers.)

Solution