Difference between revisions of "1951 AHSME Problems/Problem 47"

 
Line 5: Line 5:
 
<math> \textbf{(E)}\ \text{none of these} </math>
 
<math> \textbf{(E)}\ \text{none of these} </math>
  
== Solution-1 ==
+
== Solution 1 ==
 +
Note that <math>\frac{1}{r^2}+\frac{1}{s^2} = \frac{r^2+s^2}{r^2s^2} = \frac{(r+s)^2-2(rs)}{(rs)^2}</math>.
 +
 
 +
By [[Vieta's]], this is <math>\frac{(-\frac{b}{a})^2-2(\frac{c}{a})}{(\frac{c}{a})^2} = \frac{\frac{b^2}{a^2}-\frac{2c}{a}}{\frac{c^2}{a^2}} = \frac{b^2-2ac}{c^2} \implies \boxed{(D)}</math>
 +
 
 +
== Solution 2 ==
 
<math>r</math> and <math>s</math> can be found in terms of <math>a</math>, <math>b</math>, and <math>c</math> by using the quadratic formula; the roots are
 
<math>r</math> and <math>s</math> can be found in terms of <math>a</math>, <math>b</math>, and <math>c</math> by using the quadratic formula; the roots are
  
Line 18: Line 23:
 
<cmath>\frac{1}{r^2}+\frac{1}{s^2}=\frac{(-b/a)^2-2(c/a)}{(c/a)^2}=\boxed{\frac{b^2-2ca}{c^2}\textbf{(D)}}</cmath>
 
<cmath>\frac{1}{r^2}+\frac{1}{s^2}=\frac{(-b/a)^2-2(c/a)}{(c/a)^2}=\boxed{\frac{b^2-2ca}{c^2}\textbf{(D)}}</cmath>
  
== Solution-2 ==
+
== Solution 3 ==
 
  here <math>r</math> and <math>s</math> are the roots of the equation <math>ax^2+bx+c=0</math>,
 
  here <math>r</math> and <math>s</math> are the roots of the equation <math>ax^2+bx+c=0</math>,
  
Line 35: Line 40:
  
 
  hence, <cmath>\frac{1}{r^2}+\frac{1}{s^2}=\boxed{\frac{b^2-2ca}{c^2}\textbf{(D)}}</cmath>
 
  hence, <cmath>\frac{1}{r^2}+\frac{1}{s^2}=\boxed{\frac{b^2-2ca}{c^2}\textbf{(D)}}</cmath>
 
== Solution 3 ==
 
Note that <math>\frac{1}{r^2}+\frac{1}{s^2} = \frac{r^2+s^2}{r^2s^2} = \frac{(r+s)^2-2(rs)}{(rs)^2}</math>.
 
 
By [[Vieta's]], this is <math>\frac{(-\frac{b}{a})^2-2(\frac{c}{a})}{(\frac{c}{a})^2} = \frac{\frac{b^2}{a^2}-\frac{2c}{a}}{\frac{c^2}{a^2}} = \frac{b^2-2ac}{c^2} \implies \boxed{(D)}</math>
 
  
 
== See Also ==
 
== See Also ==

Latest revision as of 21:24, 16 August 2023

Problem

If $r$ and $s$ are the roots of the equation $ax^2+bx+c=0$, the value of $\frac{1}{r^{2}}+\frac{1}{s^{2}}$ is:

$\textbf{(A)}\ b^{2}-4ac\qquad\textbf{(B)}\ \frac{b^{2}-4ac}{2a}\qquad\textbf{(C)}\ \frac{b^{2}-4ac}{c^{2}}\qquad\textbf{(D)}\ \frac{b^{2}-2ac}{c^{2}}$ $\textbf{(E)}\ \text{none of these}$

Solution 1

Note that $\frac{1}{r^2}+\frac{1}{s^2} = \frac{r^2+s^2}{r^2s^2} = \frac{(r+s)^2-2(rs)}{(rs)^2}$.

By Vieta's, this is $\frac{(-\frac{b}{a})^2-2(\frac{c}{a})}{(\frac{c}{a})^2} = \frac{\frac{b^2}{a^2}-\frac{2c}{a}}{\frac{c^2}{a^2}} = \frac{b^2-2ac}{c^2} \implies \boxed{(D)}$

Solution 2

$r$ and $s$ can be found in terms of $a$, $b$, and $c$ by using the quadratic formula; the roots are

\[\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]

By Vieta's Formula, $r+s=-\frac{b}{a}$ and $rs=\frac{c}{a}$. Now let's algebraically manipulate what we want to find:

\[\frac{1}{r^2}+\frac{1}{s^2}=\frac{r^2+s^2}{r^2s^2}=\frac{(r+s)^2-2rs}{(rs)^2}\]

Plugging in the values for $r+s$ and $rs$ gives

\[\frac{1}{r^2}+\frac{1}{s^2}=\frac{(-b/a)^2-2(c/a)}{(c/a)^2}=\boxed{\frac{b^2-2ca}{c^2}\textbf{(D)}}\]

Solution 3

here $r$ and $s$ are the roots of the equation $ax^2+bx+c=0$,
now we can convert this equation with roots $r^2$ and $s^2$.
let, $y=x^2$ then above equation becomes
\[ay+c=-b\sqrt y\] square on both sides we get \[a^2y^2 +(2ac-b^2)y +c^2 =0\]
Again we can change this equation with roots $\frac{1}{r^2}$ and $\frac{1}{s^2}$ .

let $z=\frac{1}{y}$ then, $a^2\frac{1}{z^2}+\frac{2ac-b^2}{z}+c^2=0$ then

       \[c^2z^2+z(2ac-b^2)+a^2=0\]

then the sum of roots of the above equation is $\frac{1}{r^2}+\frac{1}{s^2}=\frac{b^2-2ac}{c^2}$

hence, \[\frac{1}{r^2}+\frac{1}{s^2}=\boxed{\frac{b^2-2ca}{c^2}\textbf{(D)}}\]

See Also

1951 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 46
Followed by
Problem 48
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png