Difference between revisions of "2003 AMC 10A Problems/Problem 13"

(Solution)
m (Solution 3)
 
(10 intermediate revisions by 9 users not shown)
Line 5: Line 5:
  
 
== Solution ==
 
== Solution ==
Let the numbers be <math>x</math>, <math>y</math>, and <math>z</math> in that order.  
+
=== Solution 1 ===
 +
Let the numbers be <math>x</math>, <math>y</math>, and <math>z</math> in that order. The given tells us that
  
<math>y=7z</math>
+
<cmath>\begin{eqnarray*}y&=&7z\
 +
x&=&4(y+z)=4(7z+z)=4(8z)=32z\
 +
x+y+z&=&32z+7z+z=40z=20\
 +
z&=&\frac{20}{40}=\frac{1}{2}\
 +
y&=&7z=7\cdot\frac{1}{2}=\frac{7}{2}\
 +
x&=&32z=32\cdot\frac{1}{2}=16
 +
\end{eqnarray*}</cmath>
  
<math>x=4(y+z)=4(7z+z)=4(8z)=32z</math>
+
Therefore, the product of all three numbers is <math>xyz=16\cdot\frac{7}{2}\cdot\frac{1}{2}=28 \Rightarrow \boxed{\mathrm{(A)}\ 28}</math>.
  
<math>x+y+z=32z+7z+z=40z=20</math>
+
=== Solution 2 ===
 +
Alternatively, we can set up the system in [[equation]] form:
  
<math>z=\frac{20}{40}=\frac{1}{2}</math>
+
<cmath>\begin{eqnarray*}1x+1y+1z&=&20\
 +
1x-4y-4z&=&0\
 +
0x+1y-7z&=&0\\
 +
\end{eqnarray*}</cmath>
  
<math>y=7z=7\cdot\frac{1}{2}=\frac{7}{2}</math>
+
Or, in [[matrix]] form
 +
<math>
 +
\begin{bmatrix}
 +
1 & 1 & 1 \
 +
1 & -4 & -4 \
 +
0 & 1 & -7
 +
\end{bmatrix}
 +
\begin{bmatrix}
 +
x \
 +
y \
 +
z \
 +
\end{bmatrix}
 +
=\begin{bmatrix}
 +
20 \
 +
0 \
 +
0 \
 +
\end{bmatrix}
 +
</math>
  
<math>x=32z=32\cdot\frac{1}{2}=16</math>
+
To solve this matrix equation, we can rearrange it thus:
  
Therefore, the product of all three numbers is <math>xyz=16\cdot\frac{7}{2}\cdot\frac{1}{2}=28 \Rightarrow A</math>
+
<math>\begin{bmatrix}
 +
x \
 +
y \
 +
z \
 +
\end{bmatrix}
 +
= \begin{bmatrix}
 +
1 & 1 & 1 \\
 +
1 & -4 & -4 \\
 +
0 & 1 & -7
 +
\end{bmatrix}
 +
^{-1}
 +
\begin{bmatrix}
 +
20 \
 +
0 \
 +
0 \
 +
\end{bmatrix}
 +
</math>
  
Alternatively, we can set up the system in matrix form:
+
Solving this matrix equation by using [[inverse matrices]] and [[matrix multiplication]] yields
  
<math>x+y+z=20</math>
+
<math>\begin{bmatrix}
 
+
x \
<math>x=4(y+z)=4y+4z</math>
+
y \
 
+
z \
<math>y=7z</math>
+
\end{bmatrix} =
 +
\begin{bmatrix}
 +
\frac{1}{2} \
 +
\frac{7}{2} \
 +
16 \
 +
\end{bmatrix}
 +
</math>
  
is equivalent to
+
Which means that <math>x = \frac{1}{2}</math>, <math>y = \frac{7}{2}</math>, and <math>z = 16</math>. Therefore, <math>xyz = \frac{1}{2}\cdot\frac{7}{2}\cdot16 = 28 \Rightarrow \boxed{\mathrm{(A)}\ 28}</math>
  
<math>1x+1y+1z=20</math>
+
=== Solution 3 ===
 +
Let's denote the 3rd number as <math>x</math>, the 2nd as <math>7x</math>, and the 1st as <math>4(7x+x)</math> according to the information given in the problem. We know that all three numbers add up to <math>20</math>, so <math>4(8x)+7x+x = 20</math>. Solving the equation we get <math>x = \frac{1}{2}</math>. Then substitute this value of x to solve for the other two numbers. Lastly, we obtain <math>28</math> as the product of all three numbers.
  
<math>1x-4y-4z=0</math>
+
==Video Solution by WhyMath==
 +
https://youtu.be/3hY9YXqn5zg
  
<math>0x+1y-7z=0</math>
+
~savannahsolver
  
Or, in matrix form
+
==Video Solution==
<math>
+
https://www.youtube.com/watch?v=7V2k1WxooJ0  ~David
  \begin{bmatrix}
 
    1 & 1 & 1 \
 
    1 & -4 & -4 \
 
    0 & 1 & -7
 
  \end{bmatrix}
 
  \begin{bmatrix}
 
    x \
 
    y \
 
    z \
 
  \end{bmatrix}
 
=
 
  \begin{bmatrix}
 
    20 \
 
    0 \
 
    0 \
 
  \end{bmatrix}
 
</math>
 
To solve this matrix equation, we can rearrange it thus:
 
<math>
 
  \begin{bmatrix}
 
    x \
 
    y \
 
    z \
 
  \end{bmatrix}
 
=
 
  \begin{bmatrix}
 
    1 & 1 & 1 \
 
    1 & -4 & -4 \
 
    0 & 1 & -7
 
  \end{bmatrix}
 
^{-1}
 
  \begin{bmatrix}
 
    20 \
 
    0 \
 
    0 \
 
  \end{bmatrix}
 
</math>
 
Solving this matrix equation by using [[inverse matrices]] and [[matrix multiplication]] yields
 
<math>
 
  \begin{bmatrix}
 
    x \
 
    y \
 
    z \
 
  \end{bmatrix}
 
=
 
\begin{bmatrix}
 
    \frac{1}{2} \
 
    \frac{7}{2} \
 
    16 \
 
  \end{bmatrix}
 
</math>
 
Which means that <math>x = \frac{1}{2}</math>, <math>y = \frac{7}{2}</math>, and <math>z = 16</math>. Therefore, <math>xyz = \frac{1}{2}\cdot\frac{7}{2}\cdot16 = 28</math>
 
  
== See Also ==
+
== See also ==
*[[2003 AMC 10A Problems]]
+
{{AMC10 box|year=2003|num-b=12|num-a=14|ab=A}}
*[[2003 AMC 10A Problems/Problem 12|Previous Problem]]
 
*[[2003 AMC 10A Problems/Problem 14|Next Problem]]
 
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 14:45, 19 August 2023

Problem

The sum of three numbers is $20$. The first is four times the sum of the other two. The second is seven times the third. What is the product of all three?

$\mathrm{(A) \ } 28\qquad \mathrm{(B) \ } 40\qquad \mathrm{(C) \ } 100\qquad \mathrm{(D) \ } 400\qquad \mathrm{(E) \ } 800$

Solution

Solution 1

Let the numbers be $x$, $y$, and $z$ in that order. The given tells us that

\begin{eqnarray*}y&=&7z\\ x&=&4(y+z)=4(7z+z)=4(8z)=32z\\ x+y+z&=&32z+7z+z=40z=20\\ z&=&\frac{20}{40}=\frac{1}{2}\\ y&=&7z=7\cdot\frac{1}{2}=\frac{7}{2}\\ x&=&32z=32\cdot\frac{1}{2}=16 \end{eqnarray*}

Therefore, the product of all three numbers is $xyz=16\cdot\frac{7}{2}\cdot\frac{1}{2}=28 \Rightarrow \boxed{\mathrm{(A)}\ 28}$.

Solution 2

Alternatively, we can set up the system in equation form:

\begin{eqnarray*}1x+1y+1z&=&20\\ 1x-4y-4z&=&0\\ 0x+1y-7z&=&0\\ \end{eqnarray*}

Or, in matrix form $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -4 & -4 \\ 0 & 1 & -7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ \end{bmatrix} =\begin{bmatrix} 20 \\ 0 \\ 0 \\ \end{bmatrix}$

To solve this matrix equation, we can rearrange it thus:

$\begin{bmatrix} x \\ y \\ z \\ \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -4 & -4 \\ 0 & 1 & -7 \end{bmatrix} ^{-1} \begin{bmatrix} 20 \\ 0 \\ 0 \\ \end{bmatrix}$

Solving this matrix equation by using inverse matrices and matrix multiplication yields

$\begin{bmatrix} x \\ y \\ z \\ \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{7}{2} \\ 16 \\ \end{bmatrix}$

Which means that $x = \frac{1}{2}$, $y = \frac{7}{2}$, and $z = 16$. Therefore, $xyz = \frac{1}{2}\cdot\frac{7}{2}\cdot16 = 28 \Rightarrow \boxed{\mathrm{(A)}\ 28}$

Solution 3

Let's denote the 3rd number as $x$, the 2nd as $7x$, and the 1st as $4(7x+x)$ according to the information given in the problem. We know that all three numbers add up to $20$, so $4(8x)+7x+x = 20$. Solving the equation we get $x = \frac{1}{2}$. Then substitute this value of x to solve for the other two numbers. Lastly, we obtain $28$ as the product of all three numbers.

Video Solution by WhyMath

https://youtu.be/3hY9YXqn5zg

~savannahsolver

Video Solution

https://www.youtube.com/watch?v=7V2k1WxooJ0 ~David

See also

2003 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png