Difference between revisions of "2018 USAMO Problems/Problem 5"
Aopsuser101 (talk | contribs) (→Solution) |
(→Solution: align env) |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
− | + | <asy> | |
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | ||
import graph; size(13cm); | import graph; size(13cm); | ||
Line 37: | Line 37: | ||
/* dots and labels */ | /* dots and labels */ | ||
dot((-5.58,1.98),dotstyle); | dot((-5.58,1.98),dotstyle); | ||
− | label(" | + | label("$A$", (-5.52,2.113333333333337), N * labelscalefactor); |
dot((-7.42,-1.22),dotstyle); | dot((-7.42,-1.22),dotstyle); | ||
− | label(" | + | label("$B$", (-7.36,-1.0866666666666638), SW * labelscalefactor); |
dot((-4.06,-3.18),dotstyle); | dot((-4.06,-3.18),dotstyle); | ||
− | label(" | + | label("$C$", (-4,-3.046666666666664), NE * labelscalefactor); |
dot((-3.8846455730896308,1.9324397054436309),dotstyle); | dot((-3.8846455730896308,1.9324397054436309),dotstyle); | ||
− | label(" | + | label("$D$", (-3.8266666666666733,2.06), NE * labelscalefactor); |
dot((-5.216225985226909,0.7450829498492438),linewidth(4pt) + dotstyle); | dot((-5.216225985226909,0.7450829498492438),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$E$", (-5.16,0.8466666666666699), NE * labelscalefactor); |
dot((-3.775365275873233,5.118495172394378),linewidth(4pt) + dotstyle); | dot((-3.775365275873233,5.118495172394378),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$F$", (-3.72,5.22), NE * labelscalefactor); |
dot((-13.275816730447621,2.195893092761112),linewidth(4pt) + dotstyle); | dot((-13.275816730447621,2.195893092761112),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$G$", (-13.226666666666675,2.3), NE * labelscalefactor); |
dot((-8.947688716232484,-0.3288482488643849),linewidth(4pt) + dotstyle); | dot((-8.947688716232484,-0.3288482488643849),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$P$", (-8.893333333333342,-0.22), NE * labelscalefactor); |
dot((-3.912501589632712,1.120300499610314),linewidth(4pt) + dotstyle); | dot((-3.912501589632712,1.120300499610314),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$Q$", (-3.88,1.18), NE * labelscalefactor); |
dot((-0.2874232022466262,3.539053630345969),linewidth(4pt) + dotstyle); | dot((-0.2874232022466262,3.539053630345969),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$X$", (-0.24,3.6466666666666705), NE * labelscalefactor); |
dot((-7.211833579631486,1.4993048370077748),linewidth(4pt) + dotstyle); | dot((-7.211833579631486,1.4993048370077748),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$M$", (-7.16,1.60666666666667), NE * labelscalefactor); |
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
/* end of picture */ | /* end of picture */ | ||
− | + | </asy> | |
− | + | ---- | |
− | <cmath>\angle DEQ + \angle AED + \angle AEP = \angle DAQ + \angle AQD + \angle AEP = 180 - \angle ADC + \angle AEP = 180 - \angle ADC + \angle ABP = \angle ABP + \angle ABC = 180</cmath> | + | <cmath>\begin{align*} |
+ | &\mathrel{\phantom{=}}\angle DEQ+\angle AED+\angle AEP\ | ||
+ | &=\angle DAQ+\angle AQD+\angle AEP\ | ||
+ | &=180-\angle ADC+\angle AEP\ | ||
+ | &=180-\angle ADC+\angle ABP\ | ||
+ | &=\angle ABP+\angle ABC\ | ||
+ | &=180 | ||
+ | \end{align*}</cmath> | ||
so <math>P,E,Q</math> are collinear. Furthermore, note that <math>DQBP</math> is cyclic because: | so <math>P,E,Q</math> are collinear. Furthermore, note that <math>DQBP</math> is cyclic because: | ||
<cmath>\angle EDQ = \angle BAE = BPE.</cmath> | <cmath>\angle EDQ = \angle BAE = BPE.</cmath> | ||
− | Notice that since <math>A</math> is the intersection of <math>(EDQ)</math> and <math>(BPE)</math>, it is the Miquel point of <math>DQBP</math>. | + | Notice that since <math>A</math> is the intersection of <math>(EDQ)</math> and <math>(BPE)</math>, it is the Miquel point of <math>DQBP</math>. |
+ | |||
+ | Now define <math>X</math> as the intersection of <math>BQ</math> and <math>DP</math>. From Pappus's theorem on <math>BFPDGQ</math> that <math>A,M,X</math> are collinear. It’s a well known property of Miquel points that <math>\angle EAX = 90</math>, so it follows that <math>MA \perp AE</math>, as desired. <math>\blacksquare</math> | ||
~AopsUser101 | ~AopsUser101 | ||
+ | |||
+ | ==Video Solution by MOP 2024== | ||
+ | https://youtu.be/jORAIJDLzp4 | ||
+ | |||
+ | ~r00tsOfUnity |
Latest revision as of 09:46, 27 August 2023
Problem 5
In convex cyclic quadrilateral we know that lines and intersect at lines and intersect at and lines and intersect at Suppose that the circumcircle of intersects line at and , and the circumcircle of intersects line at and , where and are collinear in that order. Prove that if lines and intersect at , then
Solution
so are collinear. Furthermore, note that is cyclic because: Notice that since is the intersection of and , it is the Miquel point of .
Now define as the intersection of and . From Pappus's theorem on that are collinear. It’s a well known property of Miquel points that , so it follows that , as desired. ~AopsUser101
Video Solution by MOP 2024
~r00tsOfUnity