Difference between revisions of "2017 AMC 12B Problems/Problem 24"
Isabelchen (talk | contribs) |
Isabelchen (talk | contribs) (→Solution 3) |
||
Line 30: | Line 30: | ||
==Solution 3== | ==Solution 3== | ||
− | + | [[File:2017AMC12BP24.png|300px|center]] | |
Let <math>AB = a</math>, <math>BC = b</math>, <math>AC = \sqrt{a^2+b^2}</math> | Let <math>AB = a</math>, <math>BC = b</math>, <math>AC = \sqrt{a^2+b^2}</math> | ||
Line 36: | Line 36: | ||
Note that <math>E</math> cannot be the intersection of <math>AC</math> and <math>BD</math>, as that would mean <math>[AED] = [CEB]</math> | Note that <math>E</math> cannot be the intersection of <math>AC</math> and <math>BD</math>, as that would mean <math>[AED] = [CEB]</math> | ||
+ | <cmath>\because \triangle BCD \sim \triangle ABC, \quad \therefore \frac{CD}{BC} = \frac{BC}{AB}, \quad CD = BD \cdot \frac{BC}{AB} = b \cdot \frac{b}{a} = \frac{b^2}{a}</cmath> | ||
− | <math>5+ | + | <cmath>[CEB] = ( \frac{BC}{AB} )^2 \cdot [ABC] = ( \frac{b}{ \sqrt{a^2+b^2} } )^2 \cdot \frac{ab}{2} = \frac{ab^3}{2(a^2+b^2)}</cmath> |
+ | |||
+ | <cmath>BF = \frac{ 2[CEB] }{BC} = \frac{ \frac{ab^3}{a^2+b^2} }{b} = \frac{ab^2}{a^2+b^2}</cmath> | ||
+ | |||
+ | <cmath>\because \triangle BFE \sim \triangle ABC, \quad \therefore \frac{EF}{BF} = \frac{BC}{AB}, \quad EF = BF \cdot \frac{BC}{AB} = \frac{ab^2}{a^2+b^2} \cdot \frac{b}{a} = \frac{b^3}{a^2+b^2}</cmath> | ||
+ | |||
+ | <cmath>EG = FG - EF = b - \frac{b^3}{a^2+b^2} = \frac{a^2b}{a^2+b^2}</cmath> | ||
+ | |||
+ | <cmath>[ABCD] = \frac{AB + CD}{2} \cdot BC = \frac{a + \frac{b^2}{a} }{2} \cdot b = \frac{ b(a^2+b^2) }{ 2a }</cmath> | ||
+ | |||
+ | <cmath>[ABE] = \frac12 \cdot AB \cdot EF = \frac12 \cdot a \cdot \frac{b^3}{a^2+b^2} = \frac{ab^3}{ 2(a^2+b^2) }</cmath> | ||
+ | |||
+ | <cmath>[CDE] = \frac12 \cdot CD \cdot EG = \frac12 \cdot \frac{a^2b}{a^2+b^2} \cdot \frac{a^2b}{a^2+b^2} = \frac{ab^3}{ 2(a^2+b^2) }</cmath> | ||
+ | |||
+ | <cmath>ADE = [ABCD] - [ABE] - [CEB] - [CDE] = \frac{ b(a^2+b^2) }{ 2a } - \frac{ab^3}{ 2(a^2+b^2) } - \frac{ab^3}{ 2(a^2+b^2) }- \frac{ab^3}{ 2(a^2+b^2) } = \frac{ b(a^2+b^2)^2 - 3a^2b^3 }{ 2a(a^2+b^2) } </cmath> | ||
+ | |||
+ | <cmath>\frac{ [ADE] }{ [CEB] } = \frac { \frac{ b(a^2+b^2)^2 - 3a^2b^3 }{ 2a(a^2+b^2) } }{ \frac{ab^3}{2(a^2+b^2)} } = \frac{ | ||
+ | (a^2 + b^2)^2 - 3a^2b^2 }{ a^2b^2 } = \frac{ a^4 - a^2b^2 + b^4 }{ a^2b^2 } = 17</cmath> | ||
+ | |||
+ | <cmath>a^4 - a^2b^2 + b^4 = 17 a^2b^2, \quad a^4 + b^4 = 18 a^2b^2, \quad \frac{a^2}{b^2} + \frac{b^2}{a^2} 18</cmath> | ||
+ | |||
+ | Let <math>x = \frac{a}{b}</math>, | ||
+ | |||
+ | <cmath>x^2 + \frac{1}{x^2} = 18, \quad x^4 - 18x^2 + 1 = 0, \quad x^2 = \frac{18 + \sqrt{324-4} }{2} = 9+ 4\sqrt{5}</cmath> | ||
+ | |||
+ | <math>\frac{a}{b} = \sqrt{ 9+ 4\sqrt{5} } = \sqrt{ 4+ 4\sqrt{5}+5 } = \boxed{\textbf{(D) } 2+ \sqrt{5}}</math> | ||
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] | ~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] |
Revision as of 09:42, 7 October 2023
Contents
Problem
Quadrilateral has right angles at and , , and . There is a point in the interior of such that and the area of is times the area of . What is ?
Solution 1
Let , , and . Note that . By the Pythagorean Theorem, . Since , the ratios of side lengths must be equal. Since , and . Let F be a point on such that is an altitude of triangle . Note that . Therefore, and . Since and form altitudes of triangles and , respectively, the areas of these triangles can be calculated. Additionally, the area of triangle can be calculated, as it is a right triangle. Solving for each of these yields: Therefore, the answer is
Solution 2
Draw line through , with on and on , . WLOG let , , . By weighted average .
Meanwhile, . This follows from comparing the ratios of triangle DEG to CFE and triangle AEG to FEB, both pairs in which the two triangles share a height perpendicular to FG, and have base ratio .
. We obtain , namely .
The rest is the same as Solution 1.
Solution 3
Let , ,
Note that cannot be the intersection of and , as that would mean
Let ,
Solution 4
Let . Then from the similar triangles condition, we compute and . Hence, the -coordinate of is just . Since lies on the unit circle, we can compute the coordinate as . By Shoelace, we want Factoring out denominators and expanding by minors, this is equivalent to This factors as , so and so the answer is .
Solution 5
Let where . Because . Notice that the diagonals are perpendicular with slopes of and . Let the intersection of and be , then . However, because is a trapezoid, and share the same area, therefore is the reflection of over the perpendicular bisector of , which is . We use the linear equations of the diagonals, , to find the coordinates of . The y-coordinate of is simply The area of is . We apply shoelace theorem to solve for the area of . The coordinates of the triangle are , so the area is
Finally, we use the property that the ratio of areas equals
~Zeric
Video Solution by MOP 2024
~r00tsOfUnity
Notes
1) is the most relevant answer choice because it shares numbers with the givens of the problem.
2) It's a very good guess to replace finding the area of triangle AED with the area of the triangle DAF, where F is the projection of D onto AB(then find the closest answer choice).
See Also
2017 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.