Difference between revisions of "LaTeX:Commands"
(→How to Build Your Own Commands) |
(→How to Build Your Own Commands) |
||
Line 261: | Line 261: | ||
==How to Build Your Own Commands== | ==How to Build Your Own Commands== | ||
− | The command \ | + | The command> |
− | + | \documength <math>\hypot{3}{4}</math>. | |
− | + | sqrt[3]{2}<math>' all the time, just to get </math>\cbrt{2}$. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
\end{document} | \end{document} | ||
</nowiki></pre> | </nowiki></pre> | ||
− | The \newcommand | + | The \newcommand dputs will be sent to the cois called. |
− | |||
− | |||
f purposes, not just for making math commands you'll ue a lot easier to call. For example, try this: | f purposes, not just for making math commands you'll ue a lot easier to call. For example, try this: | ||
<pre><nowiki> | <pre><nowiki> | ||
− | + | \pdfpagewidth 8.5p A.\ #2\hfill B.\ #3\hfill | |
− | |||
− | |||
− | \pdfpagewidth 8. | ||
− | |||
C.\ #4\hfill D.\ #5\hfill E.\ NOTA} | C.\ #4\hfill D.\ #5\hfill E.\ NOTA} | ||
\begin{document} | \begin{document} | ||
− | \prob{ | + | \prob{Evaluateum_{fty \frac{1}{ |
− | |||
==See Also== | ==See Also== | ||
*[[LaTeX:Packages | Next: Packages]] | *[[LaTeX:Packages | Next: Packages]] | ||
*[[LaTeX:Symbols | Previous: Symbols]] | *[[LaTeX:Symbols | Previous: Symbols]] |
Revision as of 23:20, 7 October 2023
LaTeX |
About - Getting Started - Diagrams - Symbols - Downloads - Basics - Math - Examples - Pictures - Layout - Commands - Packages - Help |
This page introduces various useful commands for rendering math in LaTeX, as well as instructions for building your own commands.
Contents
[hide]Subscripts and Superscripts
Subscripts and superscripts (such as exponents) can be made using the underscore _ and caret ^ symbols respectively.
Symbol | Command | Symbol | Command |
---|---|---|---|
2^2 | a_i | ||
2^{23} | n_{i-1} | ||
a^{i+1}_3 | x^{3^2} | ||
2^{a_i} | 2^a_i |
Notice that we can apply both a subscript and a superscript at the same time. For subscripts or superscripts with more than one character, you must surround what you want to be the exponent/superscript with curly braces. For example, x^10
produces , while x^{10}
produces .
Math Commands
Here are some commonly used math commands in LaTeX:
Fractions
Symbol | Command |
---|---|
\frac{1}{2} or \frac12 | |
\frac{2}{x+2} | |
\frac{1+\frac{1}{x}}{3x + 2} |
Notice that with fractions with a 1-digit numerator and a 1-digit denominator, we can simply group the numerator and the denominator together as one number. However, for fractions with either a numerator or a denominator that requires more than one character (or if the numerator starts with a letter), you need to surround everything in curly brackets.
Use \cfrac for continued fractions.
Expression | Command |
---|---|
\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1}}}} |
Radicals
Symbol | Command |
---|---|
\sqrt{3} | |
\sqrt{x+y} | |
\sqrt{x+\frac{1}{2}} | |
\sqrt[3]{3} | |
\sqrt[n]{x} |
Sums, Products, Limits and Logarithms
Use the commands \sum, \prod, \lim, and \log respectively. To denote lower and upper bounds, or the base of the logarithm, use _ and ^ in the same way they are used for subscripts and superscripts. (Lower and upper bounds for integrals work the same way, as you'll see in the calculus section)
Symbol | Command |
---|---|
\sum_{i=1}^{\infty}\frac{1}{i} | |
\prod_{n=1}^5\frac{n}{n-1} | |
\lim_{x\to\infty}\frac{1}{x} | |
\lim\limits_{x\to\infty}\frac{1}{x} | |
\log_n n^2 |
Some of these are prettier in display mode:
Symbol | Command |
---|---|
\sum_{i=1}^{\infty}\frac{1}{i} | |
\prod_{n=1}^5\frac{n}{n-1} | |
\lim_{x\to\infty}\frac{1}{x} |
Note that we can use sums, products, and logarithms without _ or ^ modifiers.
Symbol | Command |
---|---|
\sum\frac{1}{i} | |
\prod\frac{n}{n-1} | |
\log n^2 | |
\ln e |
Mods
Symbol | Command |
---|---|
9\equiv 3 \bmod{6} | |
9\equiv 3 \pmod{6} | |
9\equiv 3 \mod{6} | |
9\equiv 3 \pod{6} |
Combinations
Symbol | Command |
---|---|
\binom{1}{1} | |
\binom{n-1}{r-1} |
These often look better in display mode:
Symbol | Command |
---|---|
\dbinom{9}{3} | |
\dbinom{n-1}{r-1} |
Trigonometric Functions
Most of these are just the abbreviation of the trigonometric function with simply a backslash added before the abbreviation.
Symbol | Command | Symbol | Command | Symbol | Command |
---|---|---|---|---|---|
\cos | \sin | \tan | |||
\sec | \csc | \cot | |||
\arccos | \arcsin | \arctan | |||
\cosh | \sinh | \tanh | |||
\coth |
Here are a couple examples:
Symbol | Command |
---|---|
\cos^2 x +\sin^2 x = 1 | |
\cos 90^\circ = 0 |
Calculus
Below are examples of calculus expressions rendered in LaTeX. Most of these commands have been introduced before. Notice how definite integrals are rendered (and the difference between inline math and display mode for definite integrals). The \, in the integrals makes a small space before the dx.
Symbol | Command |
---|---|
\frac{d}{dx}\left(x^2\right) = 2x | |
\int 2x\,dx = x^2+C | |
\int^5_1 2x\,dx = 24 | |
\frac{\partial^2U}{\partial x^2} + \frac{\partial^2U}{\partial y^2} | |
\frac{1}{4\pi}\oint_\Sigma\frac{1}{r}\frac{\partial U}{\partial n} ds |
Overline and Underline
Symbol | Command |
---|---|
\overline{a+bi} | |
\underline{747} |
LaTeX
Other Functions
Symbol | Command | Symbol | Command | Symbol | Command |
---|---|---|---|---|---|
\arg | \deg | \det | |||
\dim | \exp | \gcd | |||
\hom | \inf | \ker | |||
\lg | \liminf | \limsup | |||
\max | \min | \Pr | |||
\sup | \smiley |
Some of these commands take subscripts in the same way sums, products, and logarithms do. Some render differently in display mode and inline math mode.
Symbol | Command | Symbol | Command | Symbol | Command |
---|---|---|---|---|---|
\dim_x | \gcd_x | \inf_x | |||
\liminf_x | \limsup_x | \max_x | |||
\min_x | \Pr_x | \sup_x |
Matrices
We can build an array or matrix with the
The characteristic polynomial $f(\lambda)$ of the $3 \times 3$ matrix \[ \left( \begin{array}{ccc} a & b & c <br />d & e & f <br />g & h & i \end{array} \right)\] is given by the equation \[ f(\lambda) = \left| \begin{array}{ccc} \lambda - a & -b & -c <br />-d & \lambda - e & -f <br />-g & -h & \lambda - i \end{array} \right|.\]
More simply, we can use the shortcut matrix environments in the amsmath package:
The characteristic polynomial $f(\lambda)$ of the $3 \times 3$ matrix \[ \begin{pmatrix} a & b & c = \begin{vmatrix} \lambda - a & -b & -c <br />-d & \lambda - e & -f <br />-g & -h & \lambda - i \end{vmaix}.\]
You can read more about how the array environment works here (it works the same as tabular).
We can also use this environment to typeset any mathematics that calls for multiple columns, such as piecewise-defined functions like this one:
\[ f(x) = \left\{ \begin{array}{ll} x+7 & \mbox{if $5< x$};<br />x^2-3 & \mbox{if $-3 \le x \le 5$};<br />-x & \mbox{if $x < -3$}.\end{array} \right. \]
Text Styles in Math Mode
You can render letters in various styles in math mode. Below are examples; you should be able to use these with any letters. The \mathbb requires the amsfonts package to be included in your document's preamble. Do not try to do \mathbb{year}. You'll get , and that looks nothing like it!
So$$n^2 + 5 = 30\text{ so we have }n=\pm5$$
gives
How to Build Your Own Commands
The command> \documength $\hypot{3}{4}$ (Error compiling LaTeX. Unknown error_msg). sqrt[3]{2}\cbrt{2}$.
\end{document}
</nowiki>The \newcommand dputs will be sent to the cois called. f purposes, not just for making math commands you'll ue a lot easier to call. For example, try this:
<nowiki> \pdfpagewidth 8.5p A.\ #2\hfill B.\ #3\hfill C.\ #4\hfill D.\ #5\hfill E.\ NOTA} \begin{document} \prob{Evaluateum_{fty \frac{1}{See Also
* Next: Packages * Previous: Symbols
Symbol | Command | Symbol | Command | Symbol | Command | Symbol | Command |
---|