Difference between revisions of "Cyclic sum"

m (Notation)
 
Line 16: Line 16:
 
*[[Summation]]
 
*[[Summation]]
 
*[[Symmetric sum]]
 
*[[Symmetric sum]]
 
+
*[[PaperMath’s sum]]
 
[[Category:Algebra]]
 
[[Category:Algebra]]
 
[[Category:Definition]]
 
[[Category:Definition]]

Latest revision as of 11:51, 8 October 2023

A cyclic sum is a summation that cycles through all the values of a function and takes their sum, so to speak.

Rigorous definition

Consider a function $f(a_1, a_2, \ldots, a_n)$. The cyclic sum $\sum_{cyc} f(a_1, a_2, \ldots, a_n)$ is equal to

\[f(a_1, a_2, \ldots, a_n) + f(a_2, a_3, \ldots, a_n, a_1) + f(a_3, a_4, \ldots, a_n, a_1, a_2) + \ldots + f(a_n, a_1, a_2, \ldots, a_{n-1}).\]

Note that not all permutations of the variables are used; they are just cycled through.

Notation

A cyclic sum is often specified by having the variables to cycle through underneath the sigma, as follows: $\sum_{a,b,c}\frac{ab}{cd}.$ Note that a cyclic sum need not cycle through all of the variables.

A cyclic sum is also sometimes specified by $\sum_{cyc}$. This notation implies that all variables are cycled through.

See also