Difference between revisions of "2003 AMC 10A Problems/Problem 13"
(→Solution) |
(err... matrices really overkill this problem ... wikify) |
||
Line 4: | Line 4: | ||
<math> \mathrm{(A) \ } 28\qquad \mathrm{(B) \ } 40\qquad \mathrm{(C) \ } 100\qquad \mathrm{(D) \ } 400\qquad \mathrm{(E) \ } 800 </math> | <math> \mathrm{(A) \ } 28\qquad \mathrm{(B) \ } 40\qquad \mathrm{(C) \ } 100\qquad \mathrm{(D) \ } 400\qquad \mathrm{(E) \ } 800 </math> | ||
+ | __TOC__ | ||
== Solution == | == Solution == | ||
− | Let the numbers be <math>x</math>, <math>y</math>, and <math>z</math> in that order. | + | === Solution 1 === |
+ | Let the numbers be <math>x</math>, <math>y</math>, and <math>z</math> in that order. The given tells us that | ||
− | < | + | <cmath>\begin{eqnarray*}y&=&7z\ |
+ | x&=&4(y+z)=4(7z+z)=4(8z)=32z\ | ||
+ | x+y+z&=&32z+7z+z=40z=20\ | ||
+ | z&=&\frac{20}{40}=\frac{1}{2}\ | ||
+ | y&=&7z=7\cdot\frac{1}{2}=\frac{7}{2}\ | ||
+ | x&=&32z=32\cdot\frac{1}{2}=16 | ||
+ | \end{eqnarray*}</cmath> | ||
− | <math> | + | Therefore, the product of all three numbers is <math>xyz=16\cdot\frac{7}{2}\cdot\frac{1}{2}=28 \Rightarrow \mathrm{(A)}</math>. |
− | + | === Solution 2 === | |
+ | Alternatively, we can set up the system in [[matrix]] form: | ||
− | < | + | <cmath>\begin{eqnarray*}1x+1y+1z&=&20\ |
− | + | 1x-4y-4z&=&0\ | |
− | + | 0x+1y-7z&=&0\ | |
− | + | \end{eqnarray*}</cmath> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Or, in matrix form | Or, in matrix form | ||
<math> | <math> | ||
− | + | \begin{bmatrix} | |
− | + | 1 & 1 & 1 \ | |
− | + | 1 & -4 & -4 \ | |
− | + | 0 & 1 & -7 | |
− | + | \end{bmatrix} | |
− | + | \begin{bmatrix} | |
− | + | x \ | |
− | + | y \ | |
− | + | z \ | |
− | + | \end{bmatrix} | |
− | = | + | =\begin{bmatrix} |
− | + | 20 \ | |
− | + | 0 \ | |
− | + | 0 \ | |
− | + | \end{bmatrix} | |
− | |||
</math> | </math> | ||
+ | |||
To solve this matrix equation, we can rearrange it thus: | To solve this matrix equation, we can rearrange it thus: | ||
− | <math> | + | |
− | + | <math>\begin{bmatrix} | |
− | + | x \ | |
− | + | y \ | |
− | + | z \ | |
− | + | \end{bmatrix} | |
− | = | + | = \begin{bmatrix} |
− | + | 1 & 1 & 1 \ | |
− | + | 1 & -4 & -4 \ | |
− | + | 0 & 1 & -7 | |
− | + | \end{bmatrix} | |
− | |||
^{-1} | ^{-1} | ||
− | + | \begin{bmatrix} | |
− | + | 20 \ | |
− | + | 0 \ | |
− | + | 0 \ | |
− | + | \end{bmatrix} | |
</math> | </math> | ||
+ | |||
Solving this matrix equation by using [[inverse matrices]] and [[matrix multiplication]] yields | Solving this matrix equation by using [[inverse matrices]] and [[matrix multiplication]] yields | ||
− | <math> | + | |
− | + | <math>\begin{bmatrix} | |
− | + | x \ | |
− | + | y \ | |
− | + | z \ | |
− | + | \end{bmatrix} = | |
− | = | + | \begin{bmatrix} |
− | + | \frac{1}{2} \ | |
− | + | \frac{7}{2} \ | |
− | + | 16 \ | |
− | + | \end{bmatrix} | |
− | |||
</math> | </math> | ||
+ | |||
Which means that <math>x = \frac{1}{2}</math>, <math>y = \frac{7}{2}</math>, and <math>z = 16</math>. Therefore, <math>xyz = \frac{1}{2}\cdot\frac{7}{2}\cdot16 = 28</math> | Which means that <math>x = \frac{1}{2}</math>, <math>y = \frac{7}{2}</math>, and <math>z = 16</math>. Therefore, <math>xyz = \frac{1}{2}\cdot\frac{7}{2}\cdot16 = 28</math> | ||
− | == See | + | == See also == |
− | + | {{AMC10 box|year=2003|num-b=12|num-a=14|ab=A}} | |
− | |||
− | |||
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] |
Revision as of 19:38, 23 November 2007
Problem
The sum of three numbers is . The first is four times the sum of the other two. The second is seven times the third. What is the product of all three?
Contents
[hide]Solution
Solution 1
Let the numbers be , , and in that order. The given tells us that
Therefore, the product of all three numbers is .
Solution 2
Alternatively, we can set up the system in matrix form:
Or, in matrix form
To solve this matrix equation, we can rearrange it thus:
Solving this matrix equation by using inverse matrices and matrix multiplication yields
Which means that , , and . Therefore,
See also
2003 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |