Difference between revisions of "2022 AMC 12B Problems/Problem 19"
Isabelchen (talk | contribs) |
Isabelchen (talk | contribs) (→Solution 3 (Law of Cosine)) |
||
Line 80: | Line 80: | ||
<cmath>BD^2 = BG^2 + DG^2 - 2 \cdot BG \cdot DG \cdot \cos \angle BGD</cmath> | <cmath>BD^2 = BG^2 + DG^2 - 2 \cdot BG \cdot DG \cdot \cos \angle BGD</cmath> | ||
− | <cmath>BD = \sqrt {2^2 + (\frac{1}{2})^2 - 2 \cdot 2 \cdot \frac12 \cdot \cos \angle BGD} = \frac{\sqrt{13}}{2}</cmath> | + | <cmath>BD = \sqrt {2^2 + \left( \frac{1}{2} \right)^2 - 2 \cdot 2 \cdot \frac12 \cdot \cos \angle BGD} = \frac{\sqrt{13}}{2}, \quad CD = \frac{\sqrt{13}}{2}</cmath> |
− | \boxed{\textbf{(A) }44} | + | By the Law of Cosine in <math>\triangle ACD</math> |
+ | |||
+ | <cmath>AD^2 = AC^2 + CD^2 - 2 \cdot AC \cdot CD \cdot \cos \angle C</cmath> | ||
+ | |||
+ | <cmath>\cos \angle C = \frac{ AC^2 + CD^2 - AD^2 }{ 2 \cdot AC \cdot CD } = \frac{ 2^2 + \left( \frac{\sqrt{13}}{2} \right)^2 - \left( \frac{3}{2} \right)^2 }{ 2 \cdot 2 \cdot \frac{\sqrt{13}}{2} } = \frac{ 5 \sqrt{13} }{26}</cmath> | ||
+ | |||
+ | <cmath> 5 + 13 + 26 = \boxed{\textbf{(A) }44}</cmath> | ||
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] | ~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] | ||
− | |||
==Solution 4 (Barycentric Coordinates)== | ==Solution 4 (Barycentric Coordinates)== |
Latest revision as of 02:53, 12 November 2023
Contents
Problem
In medians and intersect at and is equilateral. Then can be written as , where and are relatively prime positive integers and is a positive integer not divisible by the square of any prime. What is
Diagram
Solution 1 (Law of Cosines)
Let . Since is the midpoint of , we must have .
Since the centroid splits the median in a ratio, and .
Applying Law of Cosines on and yields and . Finally, applying Law of Cosines on yields . The requested sum is .
Solution 2 (Law of Cosines: One Fewer Step)
Let . Since (as is the centroid), . Also, and . By the law of cosines (applied on ), .
Applying the law of cosines again on gives , so the answer is .
Solution 3 (Law of Cosine)
Let . Since is the centroid, , .
By the Law of Cosine in
By the Law of Cosine in
Solution 4 (Barycentric Coordinates)
Using reference triangle , we can let If we move each over by , leaving unchanged, we have The angle between vectors and satisfies giving the answer, .
~r00tsOfUnity
Video Solution by MOP 2024
~r00tsOfUnity
Video Solution (Just 3 min!)
~Education, the Study of Everything
Video Solution(Length & Angle Chasing)
~Hayabusa1
See Also
2022 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.