Difference between revisions of "2023 AMC 12B Problems/Problem 12"

(Problem)
(Problem)
Line 3: Line 3:
 
For complex number <math>u = a+bi</math> and <math>v = c+di</math> (where <math>i=\sqrt{-1}</math>), define the binary operation
 
For complex number <math>u = a+bi</math> and <math>v = c+di</math> (where <math>i=\sqrt{-1}</math>), define the binary operation
  
<math>u \earth v = ac \sum bdi</math>
+
<math>u \cdot v = ac + bdi</math>
 
+
 
<math>\textbf{(A) }\frac{9}{25}\qquad\textbf{(B) }\frac{1}{9}\qquad\textbf{(C) }\frac{1}{5}\qquad\textbf{(D) }\frac{25}{169}\qquad\textbf{(E) }\frac{4}{25}</math>
+
Suppose <math>z</math> is a complex number such that <math>z\cdot z = z^{2}+40</math>. What is <math>abs{z}</math>?
 +
 
 +
<math>\textbf{(A) }2\qquad\textbf{(B) }5\qquad\textbf{(C) }\sqrt{5}\qquad\textbf{(D) }\sqrt{10}\qquad\textbf{(E) }5\sqrt{2}</math>

Revision as of 16:45, 15 November 2023

Problem

For complex number $u = a+bi$ and $v = c+di$ (where $i=\sqrt{-1}$), define the binary operation

$u \cdot v = ac + bdi$

Suppose $z$ is a complex number such that $z\cdot z = z^{2}+40$. What is $abs{z}$?

$\textbf{(A) }2\qquad\textbf{(B) }5\qquad\textbf{(C) }\sqrt{5}\qquad\textbf{(D) }\sqrt{10}\qquad\textbf{(E) }5\sqrt{2}$