Difference between revisions of "2023 AMC 10B Problems/Problem 13"

(Solution)
(Tag: Redirect target changed)
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
==Problem 13==
+
#redirect[[2023 AMC 12B Problems/Problem 9]]
 
 
What is the area of the region in the coordinate plane defined by
 
 
 
<math>| | x | - 1 | + | | y | - 1 | \le 1</math>?
 
 
 
<math>\text{(A)}\ 2 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 4 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 12</math>
 
 
 
== Solution ==
 
First consider, <math>|x-1|+|y-1| <= 1.</math>
 
We can see that it's a square with radius 1 (diagonal 2). The area of the square is <math>\sqrt{2}^2 = 2.</math>
 
 
 
Next, we add one more absolute value and get <math>|x-1|+||y|-1| <= 1.</math> This will double the square reflecting over x-axis.
 
 
 
So now we got 2 squares.
 
 
 
Finally, we add one more absolute value and get <math>||x|-1|+||y|-1| <= 1.</math> This will double the squares reflecting over y-axis.
 
 
 
In the end, we got 4 squares.  The total area is <math>4\cdot2 = </math>\ text{(B)}\ 8$.
 

Latest revision as of 19:36, 15 November 2023