Difference between revisions of "1964 IMO Problems/Problem 6"
(→Solution) |
(→Solution) |
||
Line 47: | Line 47: | ||
<math>\frac{h_{\Delta A_{1}B_{1}C_{1}}Area_{\Delta A_{1}B_{1}C_{1}}}{3}=3\frac{h_{D}Area_{\Delta ABC}}{3}</math> | <math>\frac{h_{\Delta A_{1}B_{1}C_{1}}Area_{\Delta A_{1}B_{1}C_{1}}}{3}=3\frac{h_{D}Area_{\Delta ABC}}{3}</math> | ||
+ | |||
+ | Since <math>Volume_{ABCD}=\frac{h_{D}Area_{\Delta ABC}}{3}</math> and | ||
{{alternate solutions}} | {{alternate solutions}} |
Revision as of 23:07, 16 November 2023
Problem
In tetrahedron , vertex is connected with , the centroid of . Lines parallel to are drawn through and . These lines intersect the planes and in points and , respectively. Prove that the volume of is one third the volume of . Is the result true if point is selected anywhere within ?
Solution
Let be the point where line intersects line
Let be the point where line intersects line
Let be the point where line intersects line
From centroid properties we have:
Therefore,
Since , then
Since , then
Since , then
Since and ,
then , and
Let be the perpendicular distance from to
Let be the perpendicular distance from to
Since and
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See Also
1964 IMO (Problems) • Resources | ||
Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Last Question |
All IMO Problems and Solutions |