Difference between revisions of "Mock AIME 6 2006-2007 Problems/Problem 5"
Line 32: | Line 32: | ||
Since <math>993 > 252</math>, then <math>n-2007\not\le S(n)</math> and there is '''no possible <math>n</math>''' when <math>n</math> has 4 digits and <math>n \ge 3000</math>. | Since <math>993 > 252</math>, then <math>n-2007\not\le S(n)</math> and there is '''no possible <math>n</math>''' when <math>n</math> has 4 digits and <math>n \ge 3000</math>. | ||
+ | |||
+ | '''Case 3:''' <math>2100 \le n \le 2999</math> | ||
+ | |||
+ | Let <math>k</math> be the 2nd digit of <math>n</math> | ||
+ | |||
+ | 2000+100k \le n \le 2099+9k, and <math>2^2+k^2 \le S(n) \le 2^2+k^2+2 \times 9^2</math> | ||
+ | |||
+ | <math>(k-1)100+93 \le n-2007 \le (k-1)100+92</math>, and <math>4+k^2 \le S(n) \le 166+k^2</math> | ||
+ | |||
Revision as of 14:36, 24 November 2023
Problem
Let be the sum of the squares of the digits of . How many positive integers satisfy the inequality ?
Solution
We start by rearranging the inequality the following way:
and compare the possible values for the left hand side and the right hand side of this inequality.
Case 1: has 5 digits or more.
Let = number of digits of n.
Then as a function of d,
, and
, and
when ,
Since for , then and there is no possible when has 5 or more digits.
Case 2: has 4 digits and
, and
, and
Since , then and there is no possible when has 4 digits and .
Case 3:
Let be the 2nd digit of
2000+100k \le n \le 2099+9k, and
, and
...ongoing writing of solution...
~Tomas Diaz. orders@tomasdiaz.com