Difference between revisions of "Mock AIME 3 Pre 2005 Problems/Problem 14"
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
+ | |||
+ | [[File:AIME_2005_14a.png|600px]] | ||
Let <math>O_1, O_2,</math> and <math>O_3</math> be the centers of <math>\omega_1, \omega_2</math> and <math>\omega_3</math> respectively. | Let <math>O_1, O_2,</math> and <math>O_3</math> be the centers of <math>\omega_1, \omega_2</math> and <math>\omega_3</math> respectively. |
Revision as of 00:51, 25 November 2023
Problem
Circles and are centered on opposite sides of line , and are both tangent to at . passes through , intersecting again at . Let and be the intersections of and , and and respectively. and are extended past and intersect and at and respectively. If and , then the area of triangle can be expressed as , where and are positive integers such that and are coprime and is not divisible by the square of any prime. Determine .
Solution
Let and be the centers of and respectively.
Let point be the midpoint of . Thus, and
Let and be the radii of circles and respectively.
Let and be the areas of triangles and respectively.
Since and , then , and
This means that . In other words, those three triangles are similar.
Since is the circumcenter of ,
then
Let be the height of to side
Then, , thus
Using similar triangles,
Therefore,
By similar triangles,
Using Heron's formula,
, where we have:
, thus
~Tomas Diaz. orders@tomasdiaz.com
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See Also
Mock AIME 3 Pre 2005 (Problems, Source) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |