Difference between revisions of "Sub-Problem 2"

(Created page with "== Problem == (b) Determine all (a,b) such that: <cmath>\sqrt{a} + \sqrt{b} = 8</cmath> <cmath>\log_{10} a + \log_{10} (b) = 2</cmath>")
 
(Solution 1)
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
(b) Determine all (a,b) such that:
+
(b) Determine all <math>(a,b)</math> such that:
                  <cmath>\sqrt{a} + \sqrt{b} = 8</cmath> <cmath>\log_{10} a +  \log_{10} (b) = 2</cmath>
+
<cmath>\sqrt{a} + \sqrt{b} = 8</cmath> <cmath>\log_{10} a +  \log_{10} (b) = 2</cmath>
 +
 
 +
== Solution 1 ==
 +
From equation 2, we can acquire ab = 100
 +
 
 +
We can then expand both sides by squaring:
 +
 
 +
<cmath>(\sqrt{a} + \sqrt{b})^2 = (8)^2</cmath>
 +
<cmath>(a + b + 2 \sqrt{ab}) = 64</cmath>
 +
 
 +
since ab = 100: 2root(ab) is 2root(100), which is 20.
 +
 
 +
We can get the below equation:
 +
 
 +
<cmath>(a + b) = 44</cmath>
 +
<cmath>(ab) = 100</cmath>
 +
 
 +
Substitue b = 44 - a, we get
 +
 
 +
<cmath>((44-a)a) = 100</cmath>
 +
<cmath>(44a - a^2 - 100) = 0</cmath>
 +
 
 +
By quadratic equations Formula:
 +
 
 +
<math>{a=\frac{-44 \pm \sqrt{44^2-4(-1)(-100)}}{2(-1)}}</math>
 +
 
 +
<math>{a=\frac{44 \pm \sqrt{1536}}{2(1)}}</math>
 +
 
 +
which leads to the answer of 22 +- 8\sqrt(6)
 +
 
 +
Since a = 44 - b, two solutions are:
 +
 
 +
<cmath>(a,b) = (22 + 8\sqrt6, 22 - 8\sqrt6)</cmath>
 +
<cmath>(a,b) = (22 - 8\sqrt6, 22 + 8\sqrt6)</cmath>
 +
 
 +
~North America Math Contest Go Go Go
 +
 
 +
== Video Solution ==
 +
https://www.youtube.com/watch?v=C180TL1PLaA
 +
 
 +
~North America Math Contest Go Go Go

Latest revision as of 21:23, 28 November 2023

Problem

(b) Determine all $(a,b)$ such that: \[\sqrt{a} + \sqrt{b} = 8\] \[\log_{10} a +  \log_{10} (b) = 2\]

Solution 1

From equation 2, we can acquire ab = 100

We can then expand both sides by squaring:

\[(\sqrt{a} + \sqrt{b})^2 = (8)^2\] \[(a + b + 2 \sqrt{ab}) = 64\]

since ab = 100: 2root(ab) is 2root(100), which is 20.

We can get the below equation:

\[(a + b) = 44\] \[(ab) = 100\]

Substitue b = 44 - a, we get

\[((44-a)a) = 100\] \[(44a - a^2 - 100) = 0\]

By quadratic equations Formula:

${a=\frac{-44 \pm \sqrt{44^2-4(-1)(-100)}}{2(-1)}}$

${a=\frac{44 \pm \sqrt{1536}}{2(1)}}$

which leads to the answer of 22 +- 8\sqrt(6)

Since a = 44 - b, two solutions are:

\[(a,b) = (22 + 8\sqrt6, 22 - 8\sqrt6)\] \[(a,b) = (22 - 8\sqrt6, 22 + 8\sqrt6)\]

~North America Math Contest Go Go Go

Video Solution

https://www.youtube.com/watch?v=C180TL1PLaA

~North America Math Contest Go Go Go