Difference between revisions of "1995 OIM Problems/Problem 6"

(Created page with "== Problem == A function <math>f: N \to N</math> is circular if for every <math>p</math> in <math>N</math> there exists <math>n</math> in <math>N</math> with <math>n \le p</ma...")
 
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
A function <math>f: N \to N</math> is circular if for every <math>p</math> in <math>N</math> there exists <math>n</math> in <math>N</math> with <math>n \le p</math> such that
 
A function <math>f: N \to N</math> is circular if for every <math>p</math> in <math>N</math> there exists <math>n</math> in <math>N</math> with <math>n \le p</math> such that
  
<cmath>f^n(p) = f( f( /cdots n \; times \cdots f(p))) = p</cmath>
+
<cmath>f^n(p) = f( f( \cdots \text{n times} \cdots f(p))) = p</cmath>
  
The function f has degree of repulsion <math>k</math>, <math>0 < k<1</math>, if for each <math>p</math> in <math>N</math>, <math>f^i(p) \ne p</math> for <math>i=1, 2, \cdots , \left\lfloor k.p \right\rfloor</math> '''(*)'''.
+
The function <math>f</math> has degree of repulsion <math>k</math>, <math>0 < k<1</math>, if for each <math>p</math> in <math>N</math>, <math>f^i(p) \ne p</math> for <math>i=1, 2, \cdots , \left\lfloor k.p \right\rfloor</math> '''(*)'''.
  
 
Find the greatest degree of repulsion that a circular function can have.
 
Find the greatest degree of repulsion that a circular function can have.

Latest revision as of 13:57, 13 December 2023

Problem

A function $f: N \to N$ is circular if for every $p$ in $N$ there exists $n$ in $N$ with $n \le p$ such that

\[f^n(p) = f( f( \cdots \text{n times} \cdots f(p))) = p\]

The function $f$ has degree of repulsion $k$, $0 < k<1$, if for each $p$ in $N$, $f^i(p) \ne p$ for $i=1, 2, \cdots , \left\lfloor k.p \right\rfloor$ (*).

Find the greatest degree of repulsion that a circular function can have.

Note (*): $\left\lfloor x \right\rfloor$ indicates the largest integer less than or equal to $x$.

~translated into English by Tomas Diaz. ~orders@tomasdiaz.com

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

https://www.oma.org.ar/enunciados/ibe10.htm