Difference between revisions of "2023 AIME II Problems/Problem 13"
(Created page with "==Solution== Denote <math>a_n = \sec^n A + \tan^n A</math>. For any <math>k</math>, we have <cmath> \begin{align*} a_n & = \sec^n A + \tan^n A \\ & = \left( \sec^{n-k} A + \t...") |
m (→Solution) |
||
(17 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
− | ==Solution== | + | ==Problem== |
+ | |||
+ | Let <math>A</math> be an acute angle such that <math>\tan A = 2 \cos A.</math> Find the number of positive integers <math>n</math> less than or equal to <math>1000</math> such that <math>\sec^n A + \tan^n A</math> is a positive integer whose units digit is <math>9.</math> | ||
+ | |||
+ | ==Solution 1== | ||
Denote <math>a_n = \sec^n A + \tan^n A</math>. | Denote <math>a_n = \sec^n A + \tan^n A</math>. | ||
Line 8: | Line 12: | ||
& = \left( \sec^{n-k} A + \tan^{n-k} A \right) \left( \sec^k A + \tan^k A \right) | & = \left( \sec^{n-k} A + \tan^{n-k} A \right) \left( \sec^k A + \tan^k A \right) | ||
- \sec^{n-k} A \tan^k A - \tan^{n-k} A \sec^k A \\ | - \sec^{n-k} A \tan^k A - \tan^{n-k} A \sec^k A \\ | ||
− | & = a_{n-k} a_k - 2^k \sec^{n-k} A \cos^k A - 2^k \tan^{n-k} A \ | + | & = a_{n-k} a_k - 2^k \sec^{n-k} A \cos^k A - 2^k \tan^{n-k} A \cot^k A \\ |
& = a_{n-k} a_k - 2^k a_{n-2k} . | & = a_{n-k} a_k - 2^k a_{n-2k} . | ||
\end{align*} | \end{align*} | ||
Line 81: | Line 85: | ||
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
+ | |||
+ | ==Solution 2 (Simple)== | ||
+ | <cmath>\tan A = 2 \cos A \implies \sin A = 2 \cos^2 A \implies \sin^2 A + \cos^2 A = 4 \cos^4 A + \cos^2 A = 1</cmath> | ||
+ | <cmath>\implies \cos^2 A = \frac {\sqrt {17} - 1}{8}.</cmath> | ||
+ | <cmath>c_n = \sec^n A + \tan^n A = \frac {1}{\cos^n A} + 2^n \cos^n A = (4\cos^2 A +1)^{\frac {n}{2}}+(4 \cos^2 A)^{\frac {n}{2}} =</cmath> | ||
+ | <cmath>= \left(\frac {\sqrt {17} + 1}{2}\right)^{\frac {n}{2}}+ \left(\frac {\sqrt {17} - 1}{2}\right)^{\frac {n}{2}}.</cmath> | ||
+ | |||
+ | It is clear, that <math>c_n</math> is not integer if <math>n \ne 4k, k > 0.</math> | ||
+ | |||
+ | Denote <math>x = \frac {\sqrt {17} + 1}{2}, y = \frac {\sqrt {17} - 1}{2} \implies</math> | ||
+ | <cmath>x \cdot y = 4, x + y = \sqrt{17}, x - y = 1 \implies x^2 + y^2 = (x - y)^2 + 2xy = 9 = c_4.</cmath> | ||
+ | |||
+ | <cmath>c_8 = x^4 + y^4 = (x^2 + y^2)^2 - 2x^2 y^2 = 9^2 - 2 \cdot 16 = 49.</cmath> | ||
+ | <cmath>c_{4k+4} = x^{4k+4} + y^{4k+4} = (x^{4k} + y^{4k})(x^2+y^2)- (x^2 y^2)(x^{4k-2}+y^{4k-2}) = 9 c_{4k}- 16 c_{4k – 4} \implies</cmath> | ||
+ | <cmath>c_{12} = 9 c_8 - 16 c_4 = 9 \cdot 49 - 16 \cdot 9 = 9 \cdot 33 = 297.</cmath> | ||
+ | <cmath>c_{16} = 9 c_{12} - 16 c_8 = 9 \cdot 297 - 16 \cdot 49 = 1889.</cmath> | ||
+ | <cmath>c_{12m + 4} \pmod{10} = 9 \cdot c_{12m} \pmod{10} - 16 \pmod{10} \cdot c_{12m - 4} \pmod{10} =</cmath> | ||
+ | <cmath>= (9 \cdot 7 - 6 \cdot 9) \pmod{10} = (3 - 4) \pmod{10} = 9.</cmath> | ||
+ | <cmath>c_{12m + 8}\pmod{10} = 9 \cdot c_{12m+4} \pmod{10} - 16 \pmod{10} \cdot c_{12m } \pmod{10} =</cmath> | ||
+ | <cmath>= (9 \cdot 9 - 6 \cdot 7) \pmod{10} = (1 - 2)\pmod{10} = 9.</cmath> | ||
+ | <cmath>c_{12m + 12} \pmod{10} = 9 \cdot c_{12m + 8} \pmod{10} - 16 \pmod{10} \cdot c_{12m + 4} \pmod{10} =</cmath> | ||
+ | <cmath>= (9 \cdot 9 - 6 \cdot 9) \pmod{10} = (1 - 4) \pmod{10} = 7 \implies</cmath> | ||
+ | |||
+ | The condition is satisfied iff <math>n = 12 k + 4</math> or <math>n = 12k + 8.</math> | ||
+ | |||
+ | If <math>n \le N</math> then the number of possible n is <math>\left\lfloor \frac{N}{4} \right\rfloor - \left\lfloor \frac{N}{12} \right\rfloor.</math> | ||
+ | |||
+ | For <math>N = 1000</math> we get <math>\left\lfloor \frac{1000}{4} \right\rfloor - \left\lfloor \frac{1000}{12} \right\rfloor = 250 - 83 = \boxed{167}.</math> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Video Solution== | ||
+ | https://youtu.be/5Dpdi8IiUiw | ||
+ | |||
+ | ~MathProblemSolvingSkills.com | ||
+ | |||
+ | |||
+ | == See also == | ||
+ | {{AIME box|year=2023|num-b=12|num-a=14|n=II}} | ||
+ | |||
+ | [[Category:Intermediate Algebra Problems]] | ||
+ | [[Category:Intermediate Number Theory Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 03:52, 19 December 2023
Problem
Let be an acute angle such that Find the number of positive integers less than or equal to such that is a positive integer whose units digit is
Solution 1
Denote . For any , we have
Next, we compute the first several terms of .
By solving equation , we get . Thus, , , , , .
In the rest of analysis, we set . Thus,
Thus, to get an integer, we have . In the rest of analysis, we only consider such . Denote and . Thus, with initial conditions , .
To get the units digit of to be 9, we have
Modulo 2, for , we have
Because , we always have for all .
Modulo 5, for , we have
We have , , , , , , . Therefore, the congruent values modulo 5 is cyclic with period 3. To get , we have .
From the above analysis with modulus 2 and modulus 5, we require .
For , because , we only need to count feasible with . The number of feasible is
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Solution 2 (Simple)
It is clear, that is not integer if
Denote
The condition is satisfied iff or
If then the number of possible n is
For we get
vladimir.shelomovskii@gmail.com, vvsss
Video Solution
~MathProblemSolvingSkills.com
See also
2023 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.