Difference between revisions of "2023 AIME II Problems/Problem 13"

(Solution 2 (Simple))
m (Solution)
(2 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
Let <math>A</math> be an acute angle such that <math>\tan A = 2 \cos A.</math> Find the number of positive integers <math>n</math> less than or equal to <math>1000</math> such that <math>\sec^n A + \tan^n A</math> is a positive integer whose units digit is <math>9.</math>
 
Let <math>A</math> be an acute angle such that <math>\tan A = 2 \cos A.</math> Find the number of positive integers <math>n</math> less than or equal to <math>1000</math> such that <math>\sec^n A + \tan^n A</math> is a positive integer whose units digit is <math>9.</math>
  
==Solution==
+
==Solution 1==
  
 
Denote <math>a_n = \sec^n A + \tan^n A</math>.
 
Denote <math>a_n = \sec^n A + \tan^n A</math>.
Line 12: Line 12:
 
& = \left( \sec^{n-k} A + \tan^{n-k} A \right) \left( \sec^k A + \tan^k A \right)
 
& = \left( \sec^{n-k} A + \tan^{n-k} A \right) \left( \sec^k A + \tan^k A \right)
 
- \sec^{n-k} A \tan^k A - \tan^{n-k} A \sec^k A \
 
- \sec^{n-k} A \tan^k A - \tan^{n-k} A \sec^k A \
& = a_{n-k} a_k - 2^k \sec^{n-k} A \cos^k A - 2^k \tan^{n-k} A \tan^k A \
+
& = a_{n-k} a_k - 2^k \sec^{n-k} A \cos^k A - 2^k \tan^{n-k} A \cot^k A \
 
& = a_{n-k} a_k - 2^k a_{n-2k} .
 
& = a_{n-k} a_k - 2^k a_{n-2k} .
 
\end{align*}
 
\end{align*}
Line 88: Line 88:
 
==Solution 2 (Simple)==
 
==Solution 2 (Simple)==
 
<cmath>\tan A = 2 \cos A \implies \sin A = 2 \cos^2 A \implies  \sin^2 A + \cos^2 A = 4  \cos^4 A + \cos^2 A = 1</cmath>
 
<cmath>\tan A = 2 \cos A \implies \sin A = 2 \cos^2 A \implies  \sin^2 A + \cos^2 A = 4  \cos^4 A + \cos^2 A = 1</cmath>
<cmath>\implies  \cos^2 A = \frac {\sqrt {17} 1}{8}.</cmath>
+
<cmath>\implies  \cos^2 A = \frac {\sqrt {17} - 1}{8}.</cmath>
 
<cmath>c_n = \sec^n A + \tan^n A = \frac {1}{\cos^n A} + 2^n \cos^n A = (4\cos^2 A +1)^{\frac {n}{2}}+(4 \cos^2 A)^{\frac {n}{2}} =</cmath>
 
<cmath>c_n = \sec^n A + \tan^n A = \frac {1}{\cos^n A} + 2^n \cos^n A = (4\cos^2 A +1)^{\frac {n}{2}}+(4 \cos^2 A)^{\frac {n}{2}} =</cmath>
<cmath>= \left(\frac {\sqrt {17} + 1}{2}\right)^{\frac {n}{2}}+ \left(\frac {\sqrt {17} 1}{2}\right)^{\frac {n}{2}}.</cmath>
+
<cmath>= \left(\frac {\sqrt {17} + 1}{2}\right)^{\frac {n}{2}}+ \left(\frac {\sqrt {17} - 1}{2}\right)^{\frac {n}{2}}.</cmath>
  
 
It is clear, that <math>c_n</math> is not integer if <math>n \ne 4k, k > 0.</math>
 
It is clear, that <math>c_n</math> is not integer if <math>n \ne 4k, k > 0.</math>
Line 100: Line 100:
 
<cmath>c_{4k+4} = x^{4k+4} + y^{4k+4} = (x^{4k} + y^{4k})(x^2+y^2)- (x^2 y^2)(x^{4k-2}+y^{4k-2}) = 9 c_{4k}- 16 c_{4k – 4} \implies</cmath>
 
<cmath>c_{4k+4} = x^{4k+4} + y^{4k+4} = (x^{4k} + y^{4k})(x^2+y^2)- (x^2 y^2)(x^{4k-2}+y^{4k-2}) = 9 c_{4k}- 16 c_{4k – 4} \implies</cmath>
 
<cmath>c_{12} = 9 c_8 - 16 c_4 = 9 \cdot 49 - 16 \cdot 9 = 9 \cdot 33 = 297.</cmath>
 
<cmath>c_{12} = 9 c_8 - 16 c_4 = 9 \cdot 49 - 16 \cdot 9 = 9 \cdot 33 = 297.</cmath>
<cmath>c_{16} = 9 c_{12} 16 c_8 = 9 \cdot 297 16 \cdot 49 = 1889.</cmath>
+
<cmath>c_{16} = 9 c_{12} - 16 c_8 = 9 \cdot 297 - 16 \cdot 49 = 1889.</cmath>
<cmath>c_{12m + 4} \pmod{10} = 9 \cdot c_{12m} \pmod{10} 16 \pmod{10} \cdot c_{12m 4}  \pmod{10} =</cmath>
+
<cmath>c_{12m + 4} \pmod{10} = 9 \cdot c_{12m} \pmod{10} - 16 \pmod{10} \cdot c_{12m - 4}  \pmod{10} =</cmath>
<cmath>= (9 \cdot 7 6 \cdot 9)  \pmod{10} = (3 4)  \pmod{10} = 9.</cmath>
+
<cmath>= (9 \cdot 7 - 6 \cdot 9)  \pmod{10} = (3 - 4)  \pmod{10} = 9.</cmath>
<cmath>c_{12m + 8}\pmod{10} = 9 \cdot c_{12m+4} \pmod{10} 16 \pmod{10} \cdot c_{12m } \pmod{10} =</cmath>
+
<cmath>c_{12m + 8}\pmod{10} = 9 \cdot c_{12m+4} \pmod{10} - 16 \pmod{10} \cdot c_{12m } \pmod{10} =</cmath>
<cmath>= (9 \cdot 9 6 \cdot 7) \pmod{10} = (1 2)\pmod{10} = 9.</cmath>
+
<cmath>= (9 \cdot 9 - 6 \cdot 7) \pmod{10} = (1 - 2)\pmod{10} = 9.</cmath>
<cmath>c_{12m + 12} \pmod{10} = 9 \cdot c_{12m+8} \pmod{10} 16 \pmod{10} \cdot c_{12m +4} \pmod{10} =</cmath>
+
<cmath>c_{12m + 12} \pmod{10} = 9 \cdot c_{12m + 8} \pmod{10} - 16 \pmod{10} \cdot c_{12m + 4} \pmod{10} =</cmath>
<cmath>= (9 \cdot 9 6 \cdot 9) \pmod{10} = (1 4) \pmod{10} = 7 \implies</cmath>
+
<cmath>= (9 \cdot 9 - 6 \cdot 9) \pmod{10} = (1 - 4) \pmod{10} = 7 \implies</cmath>
  
 
The condition is satisfied iff <math>n = 12 k + 4</math> or <math>n = 12k + 8.</math>
 
The condition is satisfied iff <math>n = 12 k + 4</math> or <math>n = 12k + 8.</math>
Line 112: Line 112:
 
If <math>n \le N</math> then the number of possible n is <math>\left\lfloor \frac{N}{4} \right\rfloor - \left\lfloor \frac{N}{12} \right\rfloor.</math>
 
If <math>n \le N</math> then the number of possible n is <math>\left\lfloor \frac{N}{4} \right\rfloor - \left\lfloor \frac{N}{12} \right\rfloor.</math>
  
For <math>N = 1000</math> we get <math>\left\lfloor \frac{1000}{4} \right\rfloor - \left\lfloor \frac{1000}{12} \right\rfloor = 250 83 = \boxed{167}.</math>
+
For <math>N = 1000</math> we get <math>\left\lfloor \frac{1000}{4} \right\rfloor - \left\lfloor \frac{1000}{12} \right\rfloor = 250 - 83 = \boxed{167}.</math>
  
 
'''vladimir.shelomovskii@gmail.com, vvsss'''
 
'''vladimir.shelomovskii@gmail.com, vvsss'''
 +
 +
==Video Solution==
 +
https://youtu.be/5Dpdi8IiUiw
 +
 +
~MathProblemSolvingSkills.com
 +
  
 
== See also ==
 
== See also ==

Revision as of 03:52, 19 December 2023

Problem

Let $A$ be an acute angle such that $\tan A = 2 \cos A.$ Find the number of positive integers $n$ less than or equal to $1000$ such that $\sec^n A + \tan^n A$ is a positive integer whose units digit is $9.$

Solution 1

Denote $a_n = \sec^n A + \tan^n A$. For any $k$, we have \begin{align*} a_n & = \sec^n A + \tan^n A \\ & = \left( \sec^{n-k} A + \tan^{n-k} A \right) \left( \sec^k A + \tan^k A \right) - \sec^{n-k} A \tan^k A - \tan^{n-k} A \sec^k A \\ & = a_{n-k} a_k - 2^k \sec^{n-k} A \cos^k A - 2^k \tan^{n-k} A \cot^k A \\ & = a_{n-k} a_k - 2^k a_{n-2k} . \end{align*}

Next, we compute the first several terms of $a_n$.

By solving equation $\tan A = 2 \cos A$, we get $\cos A = \frac{\sqrt{2 \sqrt{17} - 2}}{4}$. Thus, $a_0 = 2$, $a_1 = \sqrt{\sqrt{17} + 4}$, $a_2 = \sqrt{17}$, $a_3 = \sqrt{\sqrt{17} + 4} \left( \sqrt{17} - 2 \right)$, $a_4 = 9$.

In the rest of analysis, we set $k = 4$. Thus, \begin{align*} a_n & = a_{n-4} a_4 - 2^4 a_{n-8}  \\ & = 9 a_{n-4} - 16 a_{n-8} . \end{align*}

Thus, to get $a_n$ an integer, we have $4 | n$. In the rest of analysis, we only consider such $n$. Denote $n = 4 m$ and $b_m = a_{4n}$. Thus, \begin{align*} b_m & = 9 b_{m-1} - 16 b_{m-2} \end{align*} with initial conditions $b_0 = 2$, $b_1 = 9$.

To get the units digit of $b_m$ to be 9, we have \begin{align*} b_m \equiv -1 & \pmod{2} \\ b_m \equiv -1 & \pmod{5} \end{align*}

Modulo 2, for $m \geq 2$, we have \begin{align*} b_m & \equiv 9 b_{m-1} - 16 b_{m-2} \\ & \equiv b_{m-1} . \end{align*}

Because $b_1 \equiv -1 \pmod{2}$, we always have $b_m \equiv -1 \pmod{2}$ for all $m \geq 2$.

Modulo 5, for $m \geq 5$, we have \begin{align*} b_m & \equiv 9 b_{m-1} - 16 b_{m-2} \\ & \equiv - b_{m-1} - b_{m-2} . \end{align*}

We have $b_0 \equiv 2 \pmod{5}$, $b_1 \equiv -1 \pmod{5}$, $b_2 \equiv -1 \pmod{5}$, $b_3 \equiv 2 \pmod{5}$, $b_4 \equiv -1 \pmod{5}$, $b_5 \equiv -1 \pmod{5}$, $b_6 \equiv 2 \pmod{5}$. Therefore, the congruent values modulo 5 is cyclic with period 3. To get $b_m \equiv -1 \pmod{5}$, we have $3 \nmid m \pmod{3}$.

From the above analysis with modulus 2 and modulus 5, we require $3 \nmid m \pmod{3}$.

For $n \leq 1000$, because $n = 4m$, we only need to count feasible $m$ with $m \leq 250$. The number of feasible $m$ is \begin{align*} 250 - \left\lfloor \frac{250}{3} \right\rfloor & = 250 - 83 \\ & = \boxed{\textbf{(167) }} . \end{align*}

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Solution 2 (Simple)

\[\tan A = 2 \cos A \implies \sin A = 2 \cos^2 A \implies  \sin^2 A + \cos^2 A = 4  \cos^4 A + \cos^2 A = 1\] \[\implies   \cos^2 A = \frac {\sqrt {17} - 1}{8}.\] \[c_n = \sec^n A + \tan^n A = \frac {1}{\cos^n A} + 2^n \cos^n A = (4\cos^2 A +1)^{\frac {n}{2}}+(4 \cos^2 A)^{\frac {n}{2}} =\] \[= \left(\frac {\sqrt {17} + 1}{2}\right)^{\frac {n}{2}}+ \left(\frac {\sqrt {17} - 1}{2}\right)^{\frac {n}{2}}.\]

It is clear, that $c_n$ is not integer if $n \ne 4k, k > 0.$

Denote $x = \frac {\sqrt {17} + 1}{2}, y = \frac {\sqrt {17} - 1}{2} \implies$ \[x \cdot y = 4, x + y = \sqrt{17}, x - y = 1 \implies x^2 + y^2 = (x - y)^2 + 2xy = 9 = c_4.\]

\[c_8 = x^4 + y^4 = (x^2 + y^2)^2 - 2x^2 y^2 = 9^2 - 2 \cdot 16 = 49.\] \[c_{4k+4} = x^{4k+4} + y^{4k+4} = (x^{4k} + y^{4k})(x^2+y^2)- (x^2 y^2)(x^{4k-2}+y^{4k-2}) = 9 c_{4k}- 16 c_{4k – 4} \implies\] \[c_{12} = 9 c_8 - 16 c_4 = 9 \cdot 49 - 16 \cdot 9 = 9 \cdot 33 = 297.\] \[c_{16} = 9 c_{12} - 16 c_8 = 9 \cdot 297 - 16 \cdot 49 = 1889.\] \[c_{12m + 4} \pmod{10} = 9 \cdot c_{12m} \pmod{10} - 16 \pmod{10} \cdot c_{12m - 4}  \pmod{10} =\] \[= (9 \cdot 7 - 6 \cdot 9)  \pmod{10} = (3 - 4)  \pmod{10} = 9.\] \[c_{12m + 8}\pmod{10} = 9 \cdot c_{12m+4} \pmod{10} - 16 \pmod{10} \cdot c_{12m } \pmod{10} =\] \[= (9 \cdot 9 - 6 \cdot 7) \pmod{10} = (1 - 2)\pmod{10} = 9.\] \[c_{12m + 12} \pmod{10} = 9 \cdot c_{12m + 8} \pmod{10} - 16 \pmod{10} \cdot c_{12m + 4} \pmod{10} =\] \[= (9 \cdot 9 - 6 \cdot 9) \pmod{10} = (1 - 4) \pmod{10} = 7 \implies\]

The condition is satisfied iff $n = 12 k + 4$ or $n = 12k + 8.$

If $n \le N$ then the number of possible n is $\left\lfloor \frac{N}{4} \right\rfloor - \left\lfloor \frac{N}{12} \right\rfloor.$

For $N = 1000$ we get $\left\lfloor \frac{1000}{4} \right\rfloor - \left\lfloor \frac{1000}{12} \right\rfloor = 250 - 83 = \boxed{167}.$

vladimir.shelomovskii@gmail.com, vvsss

Video Solution

https://youtu.be/5Dpdi8IiUiw

~MathProblemSolvingSkills.com


See also

2023 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png