Difference between revisions of "2002 AMC 12P Problems/Problem 21"

(See also)
(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
How many positive [[integer]]s <math>b</math> have the property that <math>\log_{b} 729</math> is a positive integer?
+
Let <math>a</math> and <math>b</math> be real numbers greater than <math>1</math> for which there exists a positive real number <math>c,</math> different from <math>1</math>, such that
 +
<cmath>2(\log_a{c} + \log_b{c}) = 9\log_{ab}{c}.</cmath>
 +
Find the largest possible value of <math>\log_a b.</math>
  
<math> \mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 1 } \qquad \mathrm{(C) \ 2 } \qquad \mathrm{(D) \ 3 } \qquad \mathrm{(E) \ 4 } </math>
+
<math>
 +
\text{(A) }\sqrt{2}
 +
\qquad
 +
\text{(B) }\sqrt{3}
 +
\qquad
 +
\text{(C) }2
 +
\qquad
 +
\text{(D) }\sqrt{6}
 +
\qquad
 +
\text{(E) }3
 +
</math>
  
 
== Solution ==
 
== Solution ==

Revision as of 00:04, 30 December 2023

Problem

Let $a$ and $b$ be real numbers greater than $1$ for which there exists a positive real number $c,$ different from $1$, such that \[2(\log_a{c} + \log_b{c}) = 9\log_{ab}{c}.\] Find the largest possible value of $\log_a b.$

$\text{(A) }\sqrt{2} \qquad \text{(B) }\sqrt{3} \qquad \text{(C) }2 \qquad \text{(D) }\sqrt{6} \qquad \text{(E) }3$

Solution

If $\log_{b} 729 = n$, then $b^n = 729$. Since $729 = 3^6$, $b$ must be $3$ to some factor of 6. Thus, there are four (3, 9, 27, 729) possible values of $b \Longrightarrow \boxed{\mathrm{E}}$.

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png