Difference between revisions of "2012 BMO Problems/Problem 4"

m
 
Line 1: Line 1:
==2012 BMO Problems/Problem 4
+
 
 
==Problem==
 
==Problem==
 
Find all functions <math>f : \mathbb{Z}^+ \to \mathbb{Z}^+</math> (where <math>\mathbb{Z}^+</math> is the set of positive integers) such that <math>f(n!) = f(n)!</math> for all positive integers <math>n</math> and such that <math>m - n</math> divides <math>f(m) - f(n)</math> for all distinct positive integers <math>m</math>, <math>n</math>.
 
Find all functions <math>f : \mathbb{Z}^+ \to \mathbb{Z}^+</math> (where <math>\mathbb{Z}^+</math> is the set of positive integers) such that <math>f(n!) = f(n)!</math> for all positive integers <math>n</math> and such that <math>m - n</math> divides <math>f(m) - f(n)</math> for all distinct positive integers <math>m</math>, <math>n</math>.
 
==Solution==
 
==Solution==
 
This is the same problem as the 2012 USAMO Problem 4. See https://artofproblemsolving.com/wiki/index.php/2012_USAMO_Problems/Problem_4.
 
This is the same problem as the 2012 USAMO Problem 4. See https://artofproblemsolving.com/wiki/index.php/2012_USAMO_Problems/Problem_4.

Latest revision as of 15:44, 1 January 2024

Problem

Find all functions $f : \mathbb{Z}^+ \to \mathbb{Z}^+$ (where $\mathbb{Z}^+$ is the set of positive integers) such that $f(n!) = f(n)!$ for all positive integers $n$ and such that $m - n$ divides $f(m) - f(n)$ for all distinct positive integers $m$, $n$.

Solution

This is the same problem as the 2012 USAMO Problem 4. See https://artofproblemsolving.com/wiki/index.php/2012_USAMO_Problems/Problem_4.