Difference between revisions of "User:Ddk001"

m (Solutions)
m (Solution 1a)
Line 180: Line 180:
 
<math>=a^3-3ab+3c</math>
 
<math>=a^3-3ab+3c</math>
  
Now, we plug in <math>a=\sqrt[3]{13}+\sqrt[3]{53}+\sqrt[3]{103}, b=\sqrt[3]{13 \cdot 53}+\sqrt[3]{13 \cdot 103}+\sqrt[3]{53 \cdot 103}, c=\sqrt[3]{13 \cdot 53 \cdot 103}+\frac{1}{3}</math>, so that <math>x^3-ax^2+bx-c=0</math>:
+
Now, we plug in <math>a=\sqrt[3]{13}+\sqrt[3]{53}+\sqrt[3]{103}, b=\sqrt[3]{13 \cdot 53}+\sqrt[3]{13 \cdot 103}+\sqrt[3]{53 \cdot 103}, c=\sqrt[3]{13 \cdot 53 \cdot 103}+\frac{1}{3}</math>:
  
 
<math>P_3=</math>
 
<math>P_3=</math>

Revision as of 20:56, 1 January 2024

Problems

See if you can solve these:

1. (Much easier) There is one and only one perfect square in the form

$(p^2+1)(q^2+1)-((pq)^2-pq+1)$

where $p$ and $q$ are prime. Find that perfect square.

2. Suppose there is complex values $x_1, x_2,$ and $x_3$ that satisfy

$(x_i-\sqrt[3]{13})((x_i-\sqrt[3]{53})(x_i-\sqrt[3]{103})=\frac{1}{3}$

Find $x_{1}^3+x_{2}^3+x_{2}^3$.

3. Suppose

$x \equiv 2^4 \cdot 3^4 \cdot 7^4+2^7 \cdot 3^7 \cdot 5^6 \pmod{7!}$

Find the remainder when $\min{x}$ is divided by 1000.

4. Suppose $f(x)$ is a $10000000010$-degrees polynomial. The Fundamental Theorem of Algebra tells us that there are $10000000010$ roots, say $r_1, r_2, \dots, r_{10000000010}$. Suppose all integers $n$ ranging from $-1$ to $10000000008$ satisfies $f(n)=n$. Also, suppose that

$(2+r_1)(2+r_2) \dots (2+r_{10000000010})=m!$

for an integer $m$. If $p$ is the minimum possible value of

$(1+r_1)(1+r_2) \dots (1+r_{10000000010})$.

Find the number of factors of the prime $999999937$ in $p$.

5. (Much harder) $\Delta ABC$ is an isosceles triangle where $CB=CA$. Let the circumcircle of $\Delta ABC$ be $\Omega$. Then, there is a point $E$ and a point $D$ on circle $\Omega$ such that $AD$ and $AB$ trisects $\angle CAE$ and $BE<AE$, and point $D$ lies on minor arc $BC$. Point $F$ is chosen on segment $AD$ such that $CF$ is one of the altitudes of $\Delta ACD$. Ray $CF$ intersects $\Omega$ at point $G$ (not $C$) and is extended past $G$ to point $I$, and $IG=AC$. Point $H$ is also on $\Omega$ and $AH=GI<HB$. Let the perpendicular bisector of $BC$ and $AC$ intersect at $O$. Let $J$ be a point such that $OJ$ is both equal to $OA$ (in length) and is perpendicular to $IJ$ and $J$ is on the same side of $CI$ as $A$. Let $O’$ be the reflection of point $O$ over line $IJ$. There exist a circle $\Omega_1$ centered at $I$ and tangent to $\Omega$ at point $K$. $IO’$ intersect $\Omega_1$ at $L$. Now suppose $O’G$ intersects $\Omega$ at one distinct point, and $O’, G$, and $K$ are collinear. If $IG^2+IG \cdot GC=\frac{3}{4} IK^2 + \frac{3}{2} IK \cdot O’L + \frac{3}{4} O’L^2$, then $\frac{EH}{BH}$ can be expressed in the form $\frac{\sqrt{b}}{a} (\sqrt{c} + d)$, where $b$ and $c$ are not divisible by the squares of any prime. Find $a^2+b^2+c^2+d^2+abcd$.

Someone mind making a diagram for this?

User Counts

If this is you first time visiting this page, change the number below by one. (Add 1, do NOT subtract 1)

$\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{0}}}}}}$

Doesn't that look like a number on a pyramid?

Answer key & solution to the problems

I will leave a big gap below this sentence so you won't see the answers accidentally.






























dsf






fsd


Here:

1. 049

2. 170

3. 736

4. 011

5. 054

Solutions:

Problem 1

There is one and only one perfect square in the form

$(p^2+1)(q^2+1)-((pq)^2-pq+1)$

Find that perfect square.

Solution 1

$(p^2+1)(q^2+1)-((pq)^2-pq+1)=p^2 \cdot q^2 +p^2+q^2+1-p^2 \cdot q^2 +pq-1=p^2+q^2+pq$. Suppose $n^2=(p^2+1)(q^2+1)-((pq)^2-pq+1)$. Then, $n^2=(p^2+1)(q^2+1)-((pq)^2-pq+1)=p^2+q^2+pq=(p+q)^2-pq \implies pq=(p+q)^2-n^2=(p+q-n)(p+q+n)$, so since $n=\sqrt{p^2+q^2+pq}>\sqrt{p^2+q^2}$, $n>p,n>q$ so $p+q-n$ is less than both $p$ and $q$ and thus we have $p+q-n=1$ and $p+q+n=pq$. Adding them gives $2p+2q=pq+1 \implies (p-2)(q-2)=3 \implies (p,q)=(3,5)$ in some order. Hence, $(p^2+1)(q^2+1)-((pq)^2-pq+1)=p^2+q^2+pq=\boxed{049}$.

Problem 2

Suppose there are complex values $x_1, x_2,$ and $x_3$ that satisfy

$(x_i-\sqrt[3]{13})((x_i-\sqrt[3]{53})(x_i-\sqrt[3]{103})=\frac{1}{3}$

Find $x_{1}^3+x_{2}^3+x_{2}^3$.

Solution 1

To make things easier, instead of saying $x_i$, we say $x$.

Now, we have $(x-\sqrt[3]{13})(x-\sqrt[3]{53})(x-\sqrt[3]{103})=\frac{1}{3}$. Expanding gives

$x^3-(\sqrt[3]{13}+\sqrt[3]{53}+\sqrt[3]{103}) \cdot x^2+(\sqrt[3]{13 \cdot 53}+\sqrt[3]{13 \cdot 103}+\sqrt[3]{53 \cdot 103})x-(\sqrt[3]{13 \cdot 53 \cdot 103}+\frac{1}{3})=0$.

To make things even simpler, let $a=\sqrt[3]{13}+\sqrt[3]{53}+\sqrt[3]{103}, b=\sqrt[3]{13 \cdot 53}+\sqrt[3]{13 \cdot 103}+\sqrt[3]{53 \cdot 103}, c=\sqrt[3]{13 \cdot 53 \cdot 103}+\frac{1}{3}$, so that $x^3-ax^2+bx-c=0$.

Solution 1a

Then, if $P_n=x_{1}^n+x_{2}^n+x_{3}^n$, Newton's Sums gives

$P_1+(-a)=0$ $(1)$

$P_2+(-a) \cdot P_1+2 \cdot b=0$ $(2)$

$P_3+(-a) \cdot P_1+b \cdot P_1+3 \cdot (-c)=0$ $(3)$

Therefore,

$P_3=0-((-a) \cdot P_1+b \cdot P_1+3 \cdot (-c))$

$=a \cdot P_2-b \cdot P_1+3 \cdot c$

$=a(a \cdot P_1-2b)-b \cdot P_1 +3 \cdot c$

$=a(a^2-2b)-ab+3c$

$=a^3-3ab+3c$

Now, we plug in $a=\sqrt[3]{13}+\sqrt[3]{53}+\sqrt[3]{103}, b=\sqrt[3]{13 \cdot 53}+\sqrt[3]{13 \cdot 103}+\sqrt[3]{53 \cdot 103}, c=\sqrt[3]{13 \cdot 53 \cdot 103}+\frac{1}{3}$:

$P_3=$