Difference between revisions of "User:Ddk001"

m (Problems)
(Problem 4)
Line 248: Line 248:
  
 
====Problem 4====
 
====Problem 4====
 +
Suppose <math>f(x)</math> is a <math>10000000010</math>-degrees polynomial. The Fundamental Theorem of Algebra tells us that there are <math>10000000010</math> roots, say <math>r_1, r_2, \dots, r_{10000000010}</math>. Suppose all integers <math>n</math> ranging from <math>-1</math> to <math>10000000008</math> satisfies <math>f(n)=n</math>. Also, suppose that
 +
 +
<math>(2+r_1)(2+r_2) \dots (2+r_{10000000010})=m!</math>
 +
 +
for an integer <math>m</math>. If <math>p</math> is the minimum possible value of
 +
 +
<math>(1+r_1)(1+r_2) \dots (1+r_{10000000010})</math>.
 +
 +
Find the number of factors of the prime <math>999999937</math> in <math>p</math>.
 +
====Solution 1====

Revision as of 19:40, 2 January 2024

User Counts

If this is you first time visiting this page, change the number below by one. (Add 1, do NOT subtract 1)

$\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{0}}}}}}$

Doesn't that look like a number on a pyramid?

Cool asyptote graphs

Asymptote is fun! [asy]draw((0,0)----(0,6));draw((0,-3)----(-3,3));draw((3,0)----(-3,6));draw((6,-6)----(-6,3));draw((6,0)----(-6,0));[/asy]

[asy]draw(circle((0,0),1));draw((1,0)----(0,1));draw((1,0)----(0,2));draw((0,-1)----(0,2));draw(circle((0,3),2));draw(circle((0,4),3));draw(circle((0,5),4));draw(circle((0,2),1));draw((0,9)----(0,18));[/asy]

Problems I made

See if you can solve these:

1. (Much easier) There is one and only one perfect square in the form

$(p^2+1)(q^2+1)-((pq)^2-pq+1)$

where $p$ and $q$ are prime. Find that perfect square.

2. Suppose there is complex values $x_1, x_2,$ and $x_3$ that satisfy

$(x_i-\sqrt[3]{13})((x_i-\sqrt[3]{53})(x_i-\sqrt[3]{103})=\frac{1}{3}$

Find $x_{1}^3+x_{2}^3+x_{2}^3$.

3. Suppose

$x \equiv 2^4 \cdot 3^4 \cdot 7^4+2^7 \cdot 3^7 \cdot 5^6 \pmod{7!}$

Find the remainder when $\min{x}$ is divided by 1000.

4. Suppose $f(x)$ is a $10000000010$-degrees polynomial. The Fundamental Theorem of Algebra tells us that there are $10000000010$ roots, say $r_1, r_2, \dots, r_{10000000010}$. Suppose all integers $n$ ranging from $-1$ to $10000000008$ satisfies $f(n)=n$. Also, suppose that

$(2+r_1)(2+r_2) \dots (2+r_{10000000010})=m!$

for an integer $m$. If $p$ is the minimum possible value of

$(1+r_1)(1+r_2) \dots (1+r_{10000000010})$.

Find the number of factors of the prime $999999937$ in $p$.

5. (Much harder) $\Delta ABC$ is an isosceles triangle where $CB=CA$. Let the circumcircle of $\Delta ABC$ be $\Omega$. Then, there is a point $E$ and a point $D$ on circle $\Omega$ such that $AD$ and $AB$ trisects $\angle CAE$ and $BE<AE$, and point $D$ lies on minor arc $BC$. Point $F$ is chosen on segment $AD$ such that $CF$ is one of the altitudes of $\Delta ACD$. Ray $CF$ intersects $\Omega$ at point $G$ (not $C$) and is extended past $G$ to point $I$, and $IG=AC$. Point $H$ is also on $\Omega$ and $AH=GI<HB$. Let the perpendicular bisector of $BC$ and $AC$ intersect at $O$. Let $J$ be a point such that $OJ$ is both equal to $OA$ (in length) and is perpendicular to $IJ$ and $J$ is on the same side of $CI$ as $A$. Let $O’$ be the reflection of point $O$ over line $IJ$. There exist a circle $\Omega_1$ centered at $I$ and tangent to $\Omega$ at point $K$. $IO’$ intersect $\Omega_1$ at $L$. Now suppose $O’G$ intersects $\Omega$ at one distinct point, and $O’, G$, and $K$ are collinear. If $IG^2+IG \cdot GC=\frac{3}{4} IK^2 + \frac{3}{2} IK \cdot O’L + \frac{3}{4} O’L^2$, then $\frac{EH}{BH}$ can be expressed in the form $\frac{\sqrt{b}}{a} (\sqrt{c} + d)$, where $b$ and $c$ are not divisible by the squares of any prime. Find $a^2+b^2+c^2+d^2+abcd$.

Someone mind making a diagram for this?

Answer key & solution to the problems

I will leave a big gap below this sentence so you won't see the answers accidentally.






























dsf






fsd

Answer key

1. 049

2. 170

3. 736

4. 011

5. 054

Solutions

Problem 1

There is one and only one perfect square in the form

$(p^2+1)(q^2+1)-((pq)^2-pq+1)$

where $p$ and $q$ is prime. Find that perfect square.

Solution 1

$(p^2+1)(q^2+1)-((pq)^2-pq+1)=p^2 \cdot q^2 +p^2+q^2+1-p^2 \cdot q^2 +pq-1=p^2+q^2+pq$. Suppose $n^2=(p^2+1)(q^2+1)-((pq)^2-pq+1)$. Then, $n^2=(p^2+1)(q^2+1)-((pq)^2-pq+1)=p^2+q^2+pq=(p+q)^2-pq \implies pq=(p+q)^2-n^2=(p+q-n)(p+q+n)$, so since $n=\sqrt{p^2+q^2+pq}>\sqrt{p^2+q^2}$, $n>p,n>q$ so $p+q-n$ is less than both $p$ and $q$ and thus we have $p+q-n=1$ and $p+q+n=pq$. Adding them gives $2p+2q=pq+1 \implies (p-2)(q-2)=3 \implies (p,q)=(3,5)$ in some order. Hence, $(p^2+1)(q^2+1)-((pq)^2-pq+1)=p^2+q^2+pq=\boxed{049}$.$\square$

Problem 2

Suppose there are complex values $x_1, x_2,$ and $x_3$ that satisfy

$(x_i-\sqrt[3]{13})((x_i-\sqrt[3]{53})(x_i-\sqrt[3]{103})=\frac{1}{3}$

Find $x_{1}^3+x_{2}^3+x_{2}^3$.

Solution 1

To make things easier, instead of saying $x_i$, we say $x$.

Now, we have $(x-\sqrt[3]{13})(x-\sqrt[3]{53})(x-\sqrt[3]{103})=\frac{1}{3}$. Expanding gives

$x^3-(\sqrt[3]{13}+\sqrt[3]{53}+\sqrt[3]{103}) \cdot x^2+(\sqrt[3]{13 \cdot 53}+\sqrt[3]{13 \cdot 103}+\sqrt[3]{53 \cdot 103})x-(\sqrt[3]{13 \cdot 53 \cdot 103}+\frac{1}{3})=0$.

To make things even simpler, let $a=\sqrt[3]{13}+\sqrt[3]{53}+\sqrt[3]{103}, b=\sqrt[3]{13 \cdot 53}+\sqrt[3]{13 \cdot 103}+\sqrt[3]{53 \cdot 103}, c=\sqrt[3]{13 \cdot 53 \cdot 103}+\frac{1}{3}$, so that $x^3-ax^2+bx-c=0$.

Then, if $P_n=x_{1}^n+x_{2}^n+x_{3}^n$, Newton's Sums gives

$P_1+(-a)=0$ $(1)$

$P_2+(-a) \cdot P_1+2 \cdot b=0$ $(2)$

$P_3+(-a) \cdot P_1+b \cdot P_1+3 \cdot (-c)=0$ $(3)$

Therefore,

$P_3=0-((-a) \cdot P_1+b \cdot P_1+3 \cdot (-c))$

$=a \cdot P_2-b \cdot P_1+3 \cdot c$

$=a(a \cdot P_1-2b)-b \cdot P_1 +3 \cdot c$

$=a(a^2-2b)-ab+3c$

$=a^3-3ab+3c$

Now, we plug in $a=\sqrt[3]{13}+\sqrt[3]{53}+\sqrt[3]{103}, b=\sqrt[3]{13 \cdot 53}+\sqrt[3]{13 \cdot 103}+\sqrt[3]{53 \cdot 103}, c=\sqrt[3]{13 \cdot 53 \cdot 103}+\frac{1}{3}:$

$P_3=(\sqrt[3]{13}+\sqrt[3]{53}+\sqrt[3]{103})^3-3(\sqrt[3]{13}+\sqrt[3]{53}+\sqrt[3]{103})(\sqrt[3]{13 \cdot 53}+\sqrt[3]{13 \cdot 103}+\sqrt[3]{53 \cdot 103})+3(\sqrt[3]{13 \cdot 53 \cdot 103}+\frac{1}{3})$.

As we have done many times before, we substitute $x=\sqrt[3]{13},y=\sqrt[3]{53},z=\sqrt[3]{103}$ to get

$P_3=(x+y+z)^3-3(x+y+z)(xy+yz+xz)+3(abc+\frac{1}{3})$

$=x^3+y^3+z^3+3x^2y+3y^2x+3x^2z+3z^2x+3z^2y+3y^2z+6xyz-3(x^2y+y^2x+x^2z+z^2x+z^2y+y^2z+3xyz)+3xyz+1$

$=x^3+y^3+z^3+3x^2y+3y^2x+3x^2z+3z^2x+3z^2y+3y^2z+6xyz-3x^2y-3y^2x-3x^2z-3z^2x-3z^2y-3y^2z-9xyz+3xyz+1$

$=x^3+y^3+z^3+1$

$=13+53+103+1$

$=\boxed{170}$. $\square$

Note: If you don't know Newton's Sums, you can also use Vieta's to bash.

Problem 3

Suppose

$x \equiv 2^4 \cdot 3^4 \cdot 7^4+2^7 \cdot 3^7 \cdot 5^6 \pmod{7!}$

Find the remainder when $\min{x}$ is divided by 1000.

Solution 1 (Euler's Totient Theorem)

We first simplify $\cdot 3^4 \cdot 7^4+2^7 \cdot 3^7 \cdot 5^6:$

$2^4 \cdot 3^4 \cdot 7^4+2^7 \cdot 3^7 \cdot 5^6=42^4+6 \cdot 30^6=(\frac{5 \cdot 6 \cdot 7}{5})^{\phi (5)}+6\cdot (\frac{5 \cdot 6 \cdot 7}{7})^{\phi (7)}+0 \cdot (\frac{5 \cdot 6 \cdot 7}{6})^{\phi (6)}$

so

$x \equiv (\frac{5 \cdot 6 \cdot 7}{5})^{\phi (5)}+6\cdot (\frac{5 \cdot 6 \cdot 7}{7})^{\phi (7)}+0 \cdot (\frac{5 \cdot 6 \cdot 7}{6})^{\phi (6)} \equiv (\frac{5 \cdot 6 \cdot 7}{5})^{\phi (5)} \equiv 1 \pmod{5}$

$x \equiv (\frac{5 \cdot 6 \cdot 7}{5})^{\phi (5)}+6\cdot (\frac{5 \cdot 6 \cdot 7}{7})^{\phi (7)}+0 \cdot (\frac{5 \cdot 6 \cdot 7}{6})^{\phi (6)} \equiv 0 \cdot (\frac{5 \cdot 6 \cdot 7}{6})^{\phi (6)} \equiv 0 \pmod{6}$

$x \equiv (\frac{5 \cdot 6 \cdot 7}{5})^{\phi (5)}+6\cdot (\frac{5 \cdot 6 \cdot 7}{7})^{\phi (7)}+0 \cdot (\frac{5 \cdot 6 \cdot 7}{6})^{\phi (6)} \equiv 6 \cdot (\frac{5 \cdot 6 \cdot 7}{7})^{\phi (7)} \equiv 6 \pmod{7}$.

Hence,

$x \equiv 1 \pmod{5}$

$x \equiv 0 \pmod{6}$

$x \equiv 6 \pmod{7}$

Now, you can bash through solving linear congruences, but there is a smarter way. Notice that $5|x-6,6|x-6$, and $7|x-6$. Hence, $210|x-6$, so $x \equiv 6 \pmod{210}$. With this in mind, we proceed with finding $x \pmod{7!}$.

Notice that $7!=5040= \text{lcm}(144,210)$ and that $x \equiv 0 \pmod{144}$. Therefore, we obtain the system of congruences :

$x \equiv 6 \pmod{210}$

$x \equiv 0 \pmod{144}$.

Solving yields $x \equiv 2\boxed{736} \pmod{7!}$, and we're done. $\square$

Problem 4

Suppose $f(x)$ is a $10000000010$-degrees polynomial. The Fundamental Theorem of Algebra tells us that there are $10000000010$ roots, say $r_1, r_2, \dots, r_{10000000010}$. Suppose all integers $n$ ranging from $-1$ to $10000000008$ satisfies $f(n)=n$. Also, suppose that

$(2+r_1)(2+r_2) \dots (2+r_{10000000010})=m!$

for an integer $m$. If $p$ is the minimum possible value of

$(1+r_1)(1+r_2) \dots (1+r_{10000000010})$.

Find the number of factors of the prime $999999937$ in $p$.

Solution 1