Difference between revisions of "Exradius"
m (filling in the gap) |
|||
Line 5: | Line 5: | ||
<math>r_1 = \frac{\Delta}{s-a} | <math>r_1 = \frac{\Delta}{s-a} | ||
= \sqrt{\frac{s(s-b)(s-c)}{s-a}} | = \sqrt{\frac{s(s-b)(s-c)}{s-a}} | ||
− | = 4R\sin{\frac{ | + | = 4R\sin{\frac{A}{2}\cos{\frac{B}{2}}\cos{\frac{C}{2}} |
</math> | </math> | ||
(Johnson 1929, p. 189), where <math>R</math> is the circumradius. Let <math>r</math> be the inradius, then | (Johnson 1929, p. 189), where <math>R</math> is the circumradius. Let <math>r</math> be the inradius, then |
Revision as of 12:53, 21 January 2024
Excircle
The radius of an excircle. Let a triangle have exradius (sometimes denoted ), opposite side of length and angle , area , and semiperimeter . Then
$r_1 = \frac{\Delta}{s-a}
= \sqrt{\frac{s(s-b)(s-c)}{s-a}} = 4R\sin{\frac{A}{2}\cos{\frac{B}{2}}\cos{\frac{C}{2}}$ (Error compiling LaTeX. Unknown error_msg) (Johnson 1929, p. 189), where is the circumradius. Let be the inradius, then
and
(Casey 1888, p. 65) and
Some fascinating formulas due to Feuerbach are
Reference:
Weisstein, Eric W. "Exradius." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Exradius.html