Difference between revisions of "2024 AMC 8 Problems/Problem 3"

(Solution 1)
(Solution 2)
Line 37: Line 37:
 
     <math>\textbf{(A)}\ 42 \qquad \textbf{(B)}\ 45\qquad \textbf{(C)}\ 49\qquad \textbf{(D)}\ 50\qquad \textbf{(E)}\ 52</math>
 
     <math>\textbf{(A)}\ 42 \qquad \textbf{(B)}\ 45\qquad \textbf{(C)}\ 49\qquad \textbf{(D)}\ 50\qquad \textbf{(E)}\ 52</math>
  
==Solution 2==
+
==Solution 1==  
  
We convert each of the fractions to <math>4+2.5+0.04</math>. After adding up the values, we get <math>\boxed{6.54}</math>.
+
We work inwards. The area of the outer shaded square is the area of the whole square minus the area of the second largest square. The area of the inner shaded region is the area of the third largest square minus the area of the smallest square. The sum of these areas is
 +
    <cmath>10^2 - 9^2 + 7^2 - 4^2 = 19 + 33 = \boxed{\textbf{(E)}\ 52}</cmath>
  
-ILoveMath31415926535
+
-Benedict T (countmath1)
  
 
==Video Solution 1 (easy to digest) by Power Solve==
 
==Video Solution 1 (easy to digest) by Power Solve==
 
https://youtu.be/HE7JjZQ6xCk?si=39xd5CKI9nx-7lyV&t=118
 
https://youtu.be/HE7JjZQ6xCk?si=39xd5CKI9nx-7lyV&t=118

Revision as of 12:28, 26 January 2024

Problem 3

Four squares of side length $4, 7, 9,$ and $10$ are arranged in increasing size order so that their left edges and bottom edges align. The squares alternate in color white-gray-white-gray, respectively, as shown in the figure. What is the area of the visible gray region in square units?

       [asy]         size(150);         filldraw((0,0)--(10,0)--(10,10)--(0,10)--cycle,gray(0.7),linewidth(1));                  filldraw((0,0)--(9,0)--(9,9)--(0,9)--cycle,white,linewidth(1));          filldraw((0,0)--(7,0)--(7,7)--(0,7)--cycle,gray(0.7),linewidth(1));          filldraw((0,0)--(4,0)--(4,4)--(0,4)--cycle,white,linewidth(1));          draw((11,0)--(11,4),linewidth(1));         draw((11,6)--(11,10),linewidth(1));         label("$10$",(11,5),fontsize(14pt));         draw((10.75,0)--(11.25,0),linewidth(1));         draw((10.75,10)--(11.25,10),linewidth(1));          draw((0,11)--(4,11),linewidth(1));         draw((6,11)--(10,11),linewidth(1));         draw((0,11.25)--(0,10.75),linewidth(1));         draw((10,11.25)--(10,10.75),linewidth(1));         label("$9$",(5,11),fontsize(14pt));          draw((-1,0)--(-1,1),linewidth(1));         draw((-1,3)--(-1,7),linewidth(1));         draw((-1.25,0)--(-0.75,0),linewidth(1));         draw((-1.25,7)--(-0.75,7),linewidth(1));         label("$7$",(-1,2),fontsize(14pt));          draw((0,-1)--(1,-1),linewidth(1));         draw((3,-1)--(4,-1),linewidth(1));         draw((0,-1.25)--(0,-.75),linewidth(1));         draw((4,-1.25)--(4,-.75),linewidth(1));         label("$4$",(2,-1),fontsize(14pt));         [/asy]
   $\textbf{(A)}\ 42 \qquad \textbf{(B)}\ 45\qquad \textbf{(C)}\ 49\qquad \textbf{(D)}\ 50\qquad \textbf{(E)}\ 52$

Solution 1

We work inwards. The area of the outer shaded square is the area of the whole square minus the area of the second largest square. The area of the inner shaded region is the area of the third largest square minus the area of the smallest square. The sum of these areas is

   \[10^2 - 9^2 + 7^2 - 4^2 = 19 + 33 = \boxed{\textbf{(E)}\ 52}\]

-Benedict T (countmath1)

Video Solution 1 (easy to digest) by Power Solve

https://youtu.be/HE7JjZQ6xCk?si=39xd5CKI9nx-7lyV&t=118