Difference between revisions of "User:Zhoujef000"

(Created page with "test ==1434== xonk")
 
(1434)
Line 2: Line 2:
 
==1434==
 
==1434==
 
xonk
 
xonk
 +
Find all functions <math>f: \mathbb{R} \to \mathbb{R}</math> such that<cmath>f(xonkrbo)=xonkrbo</cmath>for all real numbers <math>x,o,n,k,r,</math> and <math>b.</math>
 +
 +
Let <math>A</math> be the set of positive real numbers. Determine, with proof, if there exists at least one function <math>f : A\to A</math> such that<cmath>f(x^x)=f(x)^{f(x)}</cmath>for all real <math>x</math> in <math>A.</math>
 +
 +
Determine all functions <math>f:\mathbb{R} \to \mathbb{R}</math> such<cmath>f(x+y)=f(y)</cmath>for all real numbers <math>x</math> and <math>y.</math>
 +
 +
Find all functions <math>f:\mathbb{R}\to \mathbb{R}</math> such that<cmath>f\left(x+\dfrac{1}{x}\right)+f\left(y+\dfrac{1}{y}\right)+f\left(z+\dfrac{1}{z}\right)=1</cmath>for all real numbers <math>x,y,z\neq 0.</math>

Revision as of 23:52, 26 January 2024

test

1434

xonk Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that\[f(xonkrbo)=xonkrbo\]for all real numbers $x,o,n,k,r,$ and $b.$

Let $A$ be the set of positive real numbers. Determine, with proof, if there exists at least one function $f : A\to A$ such that\[f(x^x)=f(x)^{f(x)}\]for all real $x$ in $A.$

Determine all functions $f:\mathbb{R} \to \mathbb{R}$ such\[f(x+y)=f(y)\]for all real numbers $x$ and $y.$

Find all functions $f:\mathbb{R}\to \mathbb{R}$ such that\[f\left(x+\dfrac{1}{x}\right)+f\left(y+\dfrac{1}{y}\right)+f\left(z+\dfrac{1}{z}\right)=1\]for all real numbers $x,y,z\neq 0.$