Difference between revisions of "2024 AMC 8 Problems/Problem 16"

(Solution)
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
 +
 +
\documentclass{article}
 +
\usepackage{pgfplots}
 +
\pgfplotsset{compat=1.9}
 +
\begin{document}
 +
\begin{tikzpicture}
 +
\begin{axis}[xmin=0,xmax=9,ymin=0,ymax=9]
 +
\addplot[mark=none] coordinates {(0,0) (9,9)};
 +
\addplot[mark=none] coordinates {(0,9) (9,0)};
 +
\end{axis}
 +
\end{tikzpicture}
 +
\end{document}
 +
 +
 +
 
We know that if a row/column of numbers has a single multiple of <math>3</math>, that entire row/column will be divisible by <math>3</math>. Since there are <math>27</math> multiples of <math>3</math> from <math>1</math> to <math>81</math>, We need to find a way to place the <math>54</math> non-multiples of <math>3</math> such that they take up as many entire rows and columns as possible.
 
We know that if a row/column of numbers has a single multiple of <math>3</math>, that entire row/column will be divisible by <math>3</math>. Since there are <math>27</math> multiples of <math>3</math> from <math>1</math> to <math>81</math>, We need to find a way to place the <math>54</math> non-multiples of <math>3</math> such that they take up as many entire rows and columns as possible.
 
If we naively put in non-multiples of <math>3</math> in <math>6</math> rows from the top, we get <math>18 - 6 = 12</math> rows that are multiples of <math>3</math>. However, we can improve this number by making some rows and columns intersect so that some squares help fill out both rows and columns
 
If we naively put in non-multiples of <math>3</math> in <math>6</math> rows from the top, we get <math>18 - 6 = 12</math> rows that are multiples of <math>3</math>. However, we can improve this number by making some rows and columns intersect so that some squares help fill out both rows and columns

Revision as of 16:15, 28 January 2024

Problem 16

Minh enters the numbers $1$ through $81$ into the cells of a $9 \times 9$ grid in some order. She calculates the product of the numbers in each row and column. What is the least number of rows and columns that could have a product divisible by $3$?

Solution

\documentclass{article} \usepackage{pgfplots} \pgfplotsset{compat=1.9} Unknown environment 'document'


We know that if a row/column of numbers has a single multiple of $3$, that entire row/column will be divisible by $3$. Since there are $27$ multiples of $3$ from $1$ to $81$, We need to find a way to place the $54$ non-multiples of $3$ such that they take up as many entire rows and columns as possible. If we naively put in non-multiples of $3$ in $6$ rows from the top, we get $18 - 6 = 12$ rows that are multiples of $3$. However, we can improve this number by making some rows and columns intersect so that some squares help fill out both rows and columns We see that filling $7$ rows/columns would usually take $7 \times 9 = 63$ of our non-multiples, but if we do $4$ rows and $3$ columns, $12$ will intersect. With our $54$ being enough as we need only $51$ non-multiples of $3$($63$ minus the $12$ overlapped). We check to see if we can fill out one more row/column, and when that fails we conclude the final answer to be $18 - 7 = \boxed{\textbf{(D)} 11}$ -IwOwOwl253 ~andliu766(Minor edits) (If someone would add a diagram that would be greatly appreciated)

Solution 2

Note you can swap/rotate any configuration of rows, such that all the rows and columns that have a product of 3 are in the top left. Hence the points are bounded by a $a \times b$ rectangle. This has $ab$ area and $a+b$ rows and columns divisible by $3$. We want $ab\ge 27$ and $a+b$ minimized.

If $ab=27$, we achieve minimum with $a+b=9+3=12$.

If $ab=28$,our best is $a+b=7+4=11$. Note if $a+b=10$, then $ab\le 25$, and hence there is no smaller answer, and we get (D) 11.

- SahanWijetunga


Solution 3

For a row or column to have a product divisible by $3$, there must be a multiple of $3$ in the row or column. To create the least amount of rows and columns with multiples of $3$, we must find a way to keep them all together, to minimize the total number of rows and columns. From $1$ to $81$, there are $27$ multiples of $3$ ($81/3$). So we have to fill $27$ cells with numbers that are multiples of $3$. If we put $25$ of these numbers in a $5 x 5$ grid, there would be $5$ rows and $5$ columns ($10$ in total), with products divisible by $3$. However, we have $27$ numbers, so $2$ numbers remain to put in the $9 x 9$ grid. If we put both numbers in the $6$th column, but one in the first row, and one in the second row, (next to the $5 x 5$ already filled), we would have a total of $6$ columns now, and still $5$ rows with products that are multiples of $3$. So the answer is $\boxed{\textbf{(D)} 11}$

~goofytaipan

Video Solution 1 (easy to digest) by Power Solve

https://youtu.be/zxkL4c316vg

Video Solution 2 by OmegaLearn.org

https://youtu.be/xfiPVmuMiXs

Video Solution 3 by SpreadTheMathLove

https://www.youtube.com/watch?v=Svibu3nKB7E

Video Solution by NiuniuMaths (Easy to understand!)

https://www.youtube.com/watch?v=V-xN8Njd_Lc

~NiuniuMaths

Video Solution by CosineMethod [🔥Fast and Easy🔥]

https://www.youtube.com/watch?v=DLzFB4EplKk

See Also

2024 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png