Difference between revisions of "Minkowski Inequality"

(category)
Line 3: Line 3:
 
Let <math>r>s</math> be a nonzero real number, then for any positive numbers <math>a_{ij}</math>, the following inequality holds:
 
Let <math>r>s</math> be a nonzero real number, then for any positive numbers <math>a_{ij}</math>, the following inequality holds:
  
<math>(\sum_{j=1}^{m}(\sum_{i=1}^{n}a_{ij}^r)^{s/r})^{1/s}\geq (\sum_{i=1}^{n}(\sum_{j=1}^{m}a_{ij}^s)^{r/s})^{1/r}</math>
+
<math>\left(\sum_{j=1}^{m}\left(\sum_{i=1}^{n}a_{ij}^r\right)^{s/r}\right)^{1/s}\geq \left(\sum_{i=1}^{n}\left(\sum_{j=1}^{m}a_{ij}^s\right)^{r/s}\right)^{1/r}</math>
  
Notice that if one of <math>r,s</math> is zero, the inequality is equivelant to [[Holder's Inequality]].
+
Notice that if one of <math>r,s</math> is zero, the inequality is equivalent to [[Holder's Inequality]].
  
 +
== Problems ==
 +
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=432791#432791 AIME 1991 Problem 15]
  
 
{{wikify}}
 
{{wikify}}

Revision as of 13:26, 19 December 2007

Minkowski Inequality states:

Let $r>s$ be a nonzero real number, then for any positive numbers $a_{ij}$, the following inequality holds:

$\left(\sum_{j=1}^{m}\left(\sum_{i=1}^{n}a_{ij}^r\right)^{s/r}\right)^{1/s}\geq \left(\sum_{i=1}^{n}\left(\sum_{j=1}^{m}a_{ij}^s\right)^{r/s}\right)^{1/r}$

Notice that if one of $r,s$ is zero, the inequality is equivalent to Holder's Inequality.

Problems

Template:Wikify This article is a stub. Help us out by expanding it.