Difference between revisions of "1975 Canadian MO Problems/Problem 1"
(Created page with "== Problem 1 == Simplify <cmath>\left(\frac{1\cdot2\cdot+2\cdot4\cdot8+\cdots+n\cdot2n\cdot4n}{1\cdot3\cdot9+2\cdot6\cdot18+\cdots+n\cdot3n\cdot9n}\right)^{1/3}</cmath>. == S...") |
(→Solution) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
== Problem 1 == | == Problem 1 == | ||
Simplify | Simplify | ||
− | <cmath>\left(\frac{1\cdot2\ | + | <cmath>\left(\frac{1\cdot2\cdot4+2\cdot4\cdot8+\cdots+n\cdot2n\cdot4n}{1\cdot3\cdot9+2\cdot6\cdot18+\cdots+n\cdot3n\cdot9n}\right)^{1/3}</cmath>. |
== Solution == | == Solution == | ||
− | + | <math>\left(\frac{1\cdot2\cdot4+2\cdot4\cdot8+\cdots+n\cdot2n\cdot4n}{1\cdot3\cdot9+2\cdot6\cdot18+\cdots+n\cdot3n\cdot9n}\right)^{1/3}</math> | |
+ | |||
+ | |||
+ | |||
+ | <math>=\left(\frac{2^3\cdot1+2^3\cdot2^3+2^3\cdot3^3+2^3\cdot4^3+\cdots+2^3n^3}{3^3+3^3\cdot2^3+3^3\cdot3^3+3^3\cdot4^3+\cdots+3^3n^3}\right)^{1/3}</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>=\left[\frac{2^3\cancel{(1^3+2^3+3^3+\cdots+n^3)}}{3^3\cancel{(1^3+2^3+3^3+\cdots+n^3)}}\right]^{1/3}</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>=\boxed{\frac{2}{3}}</math> | ||
+ | |||
+ | |||
{{Old CanadaMO box|before=First question|num-a=2|year=1975}} | {{Old CanadaMO box|before=First question|num-a=2|year=1975}} |