Difference between revisions of "1981 IMO Problems/Problem 6"

m (Solution)
(Solution)
Line 25: Line 25:
 
https://beastacademy.com/
 
https://beastacademy.com/
  
== Solution 2 ==https://beastacademy.com/
+
== Solution 2 ==
 
 
\begin{center}
 
\begin{tabular}{||c c c c||}
 
\hline
 
Col1 & Col2 & Col2 & Col3 \ [0.5ex]
 
\hline\hline
 
1 & 6 & 87837 & 787 \
 
\hline
 
2 & 7 & 78 & 5415 \
 
\hline
 
3 & 545 & 778 & 7507 \
 
\hline
 
4 & 545 & 18744 & 7560 \
 
\hline
 
5 & 88 & 788 & 6344 \ [1ex]
 
\hline
 
\end{tabular}
 
\end{center}
 
 
 
 
 
 
 
[[Category:Olympiad Algebra Problems]]
 
[[Category:Functional Equation Problems]]
 

Revision as of 20:46, 8 April 2024

Problem

The function $f(x,y)$ satisfies

(1) $f(0,y)=y+1,$

(2) $f(x+1,0)=f(x,1),$

(3) $f(x+1,y+1)=f(x,f(x+1,y)),$

for all non-negative integers $x,y$. Determine $f(4,1981)$.

Solution

We observe that $f(1,0) = f(0,1) = 2$ and that $f(1, y+1) = f(0, f(1,y)) = f(1,y) + 1$, so by induction, $f(1,y) = y+2$. Similarly, $f(2,0) = f(1,1) = 3$ and $f(2, y+1) = f(2,y) + 2$, yielding $f(2,y) = 2y + 3$.

We continue with $f(3,0) + 3 = 8$; $f(3, y+1) + 3 = 2(f(3,y) + 3)$; $f(3,y) + 3 = 2^{y+3}$; and $f(4,0) + 3 = 2^{2^2}$; $f(4,y) + 3 = 2^{f(4,y) + 3}$.

It follows that $f(4,1981) = 2^{2\cdot ^{ . \cdot 2}} - 3$ when there are 1984 2s, Q.E.D.

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

1981 IMO (Problems) • Resources
Preceded by
Problem 5
1 2 3 4 5 6 Followed by
Last question
All IMO Problems and Solutions

https://beastacademy.com/ https://beastacademy.com/

Solution 2