Difference between revisions of "2023 IOQM/Problem 1"
(→Solution 1(Spacing of squares)) |
(→Solution 1(Spacing of squares)) |
||
(One intermediate revision by one other user not shown) | |||
Line 20: | Line 20: | ||
'''Claim: The distance between 2 consecutive [[perfect squares]] gets larger as they get bigger''' | '''Claim: The distance between 2 consecutive [[perfect squares]] gets larger as they get bigger''' | ||
− | '''Proof:''' Let the 2 consecutive [[perfect squares]] be <math>m^{2}</math> and <math>(m+1)^{2}</math>. Now distance between them (Number of numbers between them) is <math>(m+1)^{2}</math>- <math>m^{2}</math> -1 =<math>2m</math>. So, we notice as <math>m</math> gets larger(i.e. the perfect squares get larger as <math>m^{2}</math> and <math>(m+1)^{2}</math> get larger as m does), <math>2m</math> (distance between <math>m^{2}</math> and <math>(m+1)^{2}</math>) also does, which means that the distance between the consecutive squares get larger | + | '''Proof:''' Let the 2 consecutive [[perfect squares]] be <math>m^{2}</math> and <math>(m+1)^{2}</math>. Now distance between them (Number of numbers between them) is <math>(m+1)^{2}</math>- <math>m^{2}</math> -1 =<math>2m</math>. So, we notice as <math>m</math> gets larger(i.e. the perfect squares get larger as <math>m^{2}</math> and <math>(m+1)^{2}</math> get larger as m does), <math>2m</math> (distance between <math>m^{2}</math> and <math>(m+1)^{2}</math>) also does, which means that the distance between the consecutive squares get larger as the consecutive squares get larger (As <math>2m</math> is the measure of distance between them). Hence, this proves our claim. |
Now, if the distance between 2 perfect squares increases as they get larger, this suffices to prove that perfect squares get rarer | Now, if the distance between 2 perfect squares increases as they get larger, this suffices to prove that perfect squares get rarer | ||
Line 241: | Line 241: | ||
~SANSGANKRSNGUPTA | ~SANSGANKRSNGUPTA | ||
+ | |||
+ | ==Solution 2== | ||
+ | All of the sets from <math>1 \leq n \leq 1000</math> will have 1000 elements the most the number of square numbers will be in <math>X_1</math> and least number of perfect squares in <math>X_{1000}</math>. So <math>a=M_1</math> and <math>b=M_{1000}</math>. This is because the gaps between square number is less when n is greater then when n is less. By checking for <math>X_1</math> there would be squares from {<math>3^2, 4^2,..., 31^2</math>}, a total of 29 numbers while in <math>X_{1000}</math> there would be squares from {<math>64^2, 65^2,..., 70^2</math>} a total of 7 numbers, so <math>a=29</math> and <math>b=7</math>, giving us <math>\boxed{a-b=\textbf{22}}</math> | ||
+ | |||
+ | ~ Lakshya Pamecha | ||
==Video Solutions== | ==Video Solutions== |
Latest revision as of 21:07, 27 April 2024
Contents
[hide]Problem
Let be a positive integer such that . Let be the number of integers in the set
. Let , and .
Find .
Solution 1(Spacing of squares)
If for any integer , if is an integer this means is a perfect square. Now the problem reduces to finding the difference between maximum and minimum no. of perfect squares in the numbers: There are 1000 numbers here.
The idea is that for the same range of numbers, the no. of perfect squares becomes rarer when the numbers become larger.
For example, there are 3 perfect squares between 1 and 10 but none between 50 and 60.
Of course we will prove this,
Claim: The distance between 2 consecutive perfect squares gets larger as they get bigger
Proof: Let the 2 consecutive perfect squares be and . Now distance between them (Number of numbers between them) is - -1 =. So, we notice as gets larger(i.e. the perfect squares get larger as and get larger as m does), (distance between and ) also does, which means that the distance between the consecutive squares get larger as the consecutive squares get larger (As is the measure of distance between them). Hence, this proves our claim.
Now, if the distance between 2 perfect squares increases as they get larger, this suffices to prove that perfect squares get rarer as no.s get larger.
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110
111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130
131 132 133 134 135 136 137 138 139 140
141 142 143 144 145 146 147 148 149 150
151 152 153 154 155 156 157 158 159 160
161 162 163 164 165 166 167 168 169 170
171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190
191 192 193 194 195 196 197 198 199 200
201 202 203 204 205 206 207 208 209 210
211 212 213 214 215 216 217 218 219 220
221 222 223 224 225 226 227 228 229 230
231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250
251 252 253 254 255 256 257 258 259 260
261 262 263 264 265 266 267 268 269 270
271 272 273 274 275 276 277 278 279 280
281 282 283 284 285 286 287 288 289 290
291 292 293 294 295 296 297 298 299 300
301 302 303 304 305 306 307 308 309 310
311 312 313 314 315 316 317 318 319 320
321 322 323 324 325 326 327 328 329 330
331 332 333 334 335 336 337 338 339 340
341 342 343 344 345 346 347 348 349 350
351 352 353 354 355 356 357 358 359 360
361 362 363 364 365 366 367 368 369 370
371 372 373 374 375 376 377 378 379 380
381 382 383 384 385 386 387 388 389 390
391 392 393 394 395 396 397 398 399 400
401 402 403 404 405 406 407 408 409 410
411 412 413 414 415 416 417 418 419 420
421 422 423 424 425 426 427 428 429 430
431 432 433 434 435 436 437 438 439 440
441 442 443 444 445 446 447 448 449 450
451 452 453 454 455 456 457 458 459 460
461 462 463 464 465 466 467 468 469 470
471 472 473 474 475 476 477 478 479 480
481 482 483 484 485 486 487 488 489 490
491 492 493 494 495 496 497 498 499 500
501 502 503 504 505 506 507 508 509 510
511 512 513 514 515 516 517 518 519 520
521 522 523 524 525 526 527 528 529 530
531 532 533 534 535 536 537 538 539 540
541 542 543 544 545 546 547 548 549 550
551 552 553 554 555 556 557 558 559 560
561 562 563 564 565 566 567 568 569 570
571 572 573 574 575 576 577 578 579 580
581 582 583 584 585 586 587 588 589 590
591 592 593 594 595 596 597 598 599 600
601 602 603 604 605 606 607 608 609 610
611 612 613 614 615 616 617 618 619 620
621 622 623 624 625 626 627 628 629 630
631 632 633 634 635 636 637 638 639 640
641 642 643 644 645 646 647 648 649 650
651 652 653 654 655 656 657 658 659 660
661 662 663 664 665 666 667 668 669 670
671 672 673 674 675 676 677 678 679 680
681 682 683 684 685 686 687 688 689 690
691 692 693 694 695 696 697 698 699 700
701 702 703 704 705 706 707 708 709 710
711 712 713 714 715 716 717 718 719 720
721 722 723 724 725 726 727 728 729 730
731 732 733 734 735 736 737 738 739 740
741 742 743 744 745 746 747 748 749 750
751 752 753 754 755 756 757 758 759 760
761 762 763 764 765 766 767 768 769 770
771 772 773 774 775 776 777 778 779 780
781 782 783 784 785 786 787 788 789 790
791 792 793 794 795 796 797 798 799 800
801 802 803 804 805 806 807 808 809 810
811 812 813 814 815 816 817 818 819 820
821 822 823 824 825 826 827 828 829 830
831 832 833 834 835 836 837 838 839 840
841 842 843 844 845 846 847 848 849 850
851 852 853 854 855 856 857 858 859 860
861 862 863 864 865 866 867 868 869 870
871 872 873 874 875 876 877 878 879 880
881 882 883 884 885 886 887 888 889 890
891 892 893 894 895 896 897 898 899 900
901 902 903 904 905 906 907 908 909 910
911 912 913 914 915 916 917 918 919 920
921 922 923 924 925 926 927 928 929 930
931 932 933 934 935 936 937 938 939 940
941 942 943 944 945 946 947 948 949 950
951 952 953 954 955 956 957 958 959 960
961 962 963 964 965 966 967 968 969 970
971 972 973 974 975 976 977 978 979 980
981 982 983 984 985 986 987 988 989 990
991 992 993 994 995 996 997 998 999 1000
From this list where perfect squares are highlighted RED (Except 1 which is Blue), it's evident that perfect squares get rarer as numbers get bigger and bigger.
⇒ The maximum value of occurs when is minimum and the minimum value of occurs when is maximum.
Minimum value of = 1 So, the numbers are 5, 6...1004. there are 29 perfect squares here, so
= ()=
Maximum value of = 1000 So, the numbers are 4001, 4002...5000. there are 7 perfect squares here, so = ()=
⇒
~SANSGANKRSNGUPTA
Solution 2
All of the sets from will have 1000 elements the most the number of square numbers will be in and least number of perfect squares in . So and . This is because the gaps between square number is less when n is greater then when n is less. By checking for there would be squares from {}, a total of 29 numbers while in there would be squares from {} a total of 7 numbers, so and , giving us
~ Lakshya Pamecha
Video Solutions
Video solution by cheetna: https://www.youtube.com/watch?v=kfEyX5yBdJo
Video solution by Unacademy Olympiad Corner: https://www.youtube.com/watch?v=Mm6mXjwU9bY
Video solution by Vedantu Olympiad School: https://www.youtube.com/watch?v=4DJXtR4VHEA
Video solution by Olympiad Wallah: https://www.youtube.com/watch?v=4HSjmY7d3nA
Video solution by : Motion Olympiad Foundation Class 5th - 10th: https://www.youtube.com/watch?v=oVaeHceHXsQ
Please note that above videos solutions are in Hindi, some in English and some in mixed(Hindi + English).
~SANSGANKRSNGUPTA
See Also
Please note that all problems on this page are copyrighted by THE | MTA(I)