Difference between revisions of "2015 IMO Problems/Problem 3"

m (Solution)
m (The Actual Problem)
Line 2: Line 2:
  
 
Prove that the circumcircles of triangles <math>KQH</math> and <math>FKM</math> are tangent to each other.
 
Prove that the circumcircles of triangles <math>KQH</math> and <math>FKM</math> are tangent to each other.
 
== The Actual Problem ==
 
 
Let <math>ABC</math> be an acute triangle with <math>AB > AC</math>. Let <math>\gamma</math> be its circumcircle, <math>H</math> its orthocenter, and <math>F</math> the foot of the altitude from <math>A</math>. Let <math>M</math> be the midpoint of <math>BC</math>. Let <math>Q</math> be the point on <math>\gamma</math> such that <math>\angle HQA = 90◦</math> and let <math>K</math> be the point on <math>\gamma</math> such that <math>\angle HKQ = 90◦</math> . Assume that the points <math>A</math>, <math>B</math>, <math>C</math>, <math>K</math> and <math>Q</math> are all different and lie on <math>\gamma</math> in this order. Prove that the circumcircles of triangles <math>KQH</math> and <math>FKM</math> are tangent to each other.
 
  
 
==Solution==
 
==Solution==

Revision as of 14:59, 1 June 2024

Let $ABC$ be an acute triangle with $AB>AC$. Let $\Gamma$ be its circumcircle, $H$ its orthocenter, and $F$ the foot of the altitude from $A$. Let $M$ be the midpoint of $BC$. Let $Q$ be the point on $\Gamma$ such that $\angle HKQ=90^\circ$. Assume that the points $A$, $B$, $C$, $K$, and $Q$ are all different, and lie on $\Gamma$ in this order.

Prove that the circumcircles of triangles $KQH$ and $FKM$ are tangent to each other.

Solution

up

We know that there is a negative inversion which is at $H$ and swaps the nine-point circle and $\gamma$. And this maps:

$A \longleftrightarrow F$. Also, let $M \longleftrightarrow Q`$. Of course $\triangle HFM \sim \triangle HQ'A$ so $\angle HQ'A = 90$. Hence, $Q' = Q$. So:

$M \longleftrightarrow Q$. Let $HA$ and $HQ$ intersect with nine-point circle $T$ and $Q$, respectively. Let's define the point $L$ such that $TNML$ is rectangle. We have found $M \longleftrightarrow Q$ and if we do the same thing, we find:

$L \longleftrightarrow K$. Now, we can say:

$(KQH) \longleftrightarrow ML$ and $(FKM) \longleftrightarrow (ALQ)$. İf we manage to show $ML$ and $(ALQ)$ are tangent, the proof ends.

We can easily say $TN || AQ$ and $AQ = 2.TN$ because $T$ and $N$ are the midpoints of $HA$ and $HQ$, respectively.

Because of the rectangle $TNML$, $TN || ML$ and $TN = ML$.

Hence, $ML || AQ$ and $AQ = 2.ML$ so $L$ is on the perpendecular bisector of $AQ$ and that follows $\triangle ALQ$ is isoceles. And we know that $ML || AQ$, so $ML$ is tangent to $(ALQ)$. We are done. $\blacksquare$

~ EgeSaribas

$Really Important Note:$ This solution is in the "IMO 2015 Solution Notes" which is written by Evan Chen.

There is the link: https://web.evanchen.cc/exams/IMO-2015-notes.pdf

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

2015 IMO (Problems) • Resources
Preceded by
Problem 2
1 2 3 4 5 6 Followed by
Problem 4
All IMO Problems and Solutions