Difference between revisions of "2013 AMC 8 Problems/Problem 24"

m (Solution)
(=Video Solution for Problems 21-25)
 
(38 intermediate revisions by 18 users not shown)
Line 27: Line 27:
 
filldraw(A--B--C--I--J--cycle,grey);
 
filldraw(A--B--C--I--J--cycle,grey);
 
draw(E--I);
 
draw(E--I);
label("$A$", A, NW);
+
dot("$A$", A, NW);
label("$B$", B, NE);
+
dot("$B$", B, NE);
label("$C$", C, NE);
+
dot("$C$", C, NE);
label("$D$", D, NW);
+
dot("$D$", D, NW);
label("$E$", E, NW);
+
dot("$E$", E, NW);
label("$F$", F, SW);
+
dot("$F$", F, SW);
label("$G$", G, S);
+
dot("$G$", G, S);
label("$H$", H, N);
+
dot("$H$", H, N);
label("$I$", I, NE);
+
dot("$I$", I, NE);
label("$J$", J, SE);
+
dot("$J$", J, SE);
 
</asy>
 
</asy>
 
==Solution==
 
<asy>
 
pair A,B,C,D,E,F,G,H,I,J,X;
 
A = (0.5,2);
 
B = (1.5,2);
 
C = (1.5,1);
 
D = (0.5,1);
 
E = (0,1);
 
F = (0,0);
 
G = (1,0);
 
H = (1,1);
 
I = (2,1);
 
J = (2,0);
 
X= extension(I,J,A,B);
 
dot(X);
 
draw(I--X--B,red);
 
draw(A--B);
 
draw(C--B);
 
draw(D--A);
 
draw(F--E);
 
draw(I--J);
 
draw(J--F);
 
draw(G--H);
 
draw(A--J);
 
filldraw(A--B--C--I--J--cycle,grey);
 
draw(E--I);
 
label("$A$", A, NW);
 
label("$B$", B, NE);
 
label("$C$", C, NE);
 
label("$D$", D, NW);
 
label("$E$", E, NW);
 
label("$F$", F, SW);
 
label("$G$", G, S);
 
label("$H$", H, N);
 
label("$I$", I, NE);
 
label("$J$", J, SE);</asy>
 
 
 
First let <math>s=2</math> (where <math>s</math> is the side length of the squares) for simplicity. We can extend <math>\overline{IJ}</math> until it hits the extension of <math>\overline{AB}</math>. Call this point <math>X</math>. The area of triangle <math>AXJ</math> then is <math>\dfrac{3 \cdot 4}{2}</math> The area of rectangle <math>BXIC</math> is <math>2 \cdot 1 = 2</math>. Thus, our desired area is <math>6-2 = 4</math>. Now, the ratio of the shaded area to the combined area of the three squares is <math>\frac{4}{3\cdot 2^2} = \boxed{\textbf{(C)}\hspace{.05in}\frac{1}{3}}</math>.
 
 
==See Also==
 
{{AMC8 box|year=2013|num-b=23|num-a=25}}
 
{{MAA Notice}}
 

Latest revision as of 09:59, 16 July 2024

Problem

Squares $ABCD$, $EFGH$, and $GHIJ$ are equal in area. Points $C$ and $D$ are the midpoints of sides $IH$ and $HE$, respectively. What is the ratio of the area of the shaded pentagon $AJICB$ to the sum of the areas of the three squares?

$\textbf{(A)}\hspace{.05in}\frac{1}{4}\qquad\textbf{(B)}\hspace{.05in}\frac{7}{24}\qquad\textbf{(C)}\hspace{.05in}\frac{1}{3}\qquad\textbf{(D)}\hspace{.05in}\frac{3}{8}\qquad\textbf{(E)}\hspace{.05in}\frac{5}{12}$

[asy] pair A,B,C,D,E,F,G,H,I,J;  A = (0.5,2); B = (1.5,2); C = (1.5,1); D = (0.5,1); E = (0,1); F = (0,0); G = (1,0); H = (1,1); I = (2,1); J = (2,0);  draw(A--B);  draw(C--B);  draw(D--A);   draw(F--E);  draw(I--J);  draw(J--F);  draw(G--H);  draw(A--J);  filldraw(A--B--C--I--J--cycle,grey); draw(E--I); dot("$A$", A, NW); dot("$B$", B, NE); dot("$C$", C, NE); dot("$D$", D, NW); dot("$E$", E, NW); dot("$F$", F, SW); dot("$G$", G, S); dot("$H$", H, N); dot("$I$", I, NE); dot("$J$", J, SE); [/asy]