|
|
(8 intermediate revisions by 4 users not shown) |
Line 6: |
Line 6: |
| | | |
| <math>\textbf{(A) }3\sqrt{3}-\pi\qquad\textbf{(B) }4\sqrt{3}-\frac{4\pi}{3}\qquad\textbf{(C) }2\sqrt{3}\qquad\textbf{(D) }4\sqrt{3}-\frac{2\pi}{3}\qquad\textbf{(E) }4+\frac{4\pi}{3}</math> | | <math>\textbf{(A) }3\sqrt{3}-\pi\qquad\textbf{(B) }4\sqrt{3}-\frac{4\pi}{3}\qquad\textbf{(C) }2\sqrt{3}\qquad\textbf{(D) }4\sqrt{3}-\frac{2\pi}{3}\qquad\textbf{(E) }4+\frac{4\pi}{3}</math> |
− |
| |
− | ==Solution 1==
| |
− |
| |
− | Let the centers of the circles containing arcs <math>\overarc{SR}</math> and <math>\overarc{TR}</math> be <math>X</math> and <math>Y</math>, respectively. Extend <math>\overline{US}</math> and <math>\overline{UT}</math> to <math>X</math> and <math>Y</math>, and connect point <math>X</math> with point <math>Y</math>.
| |
− | <asy>
| |
− | unitsize(1 cm);
| |
− | pair U,S,T,R,X,Y;
| |
− | U =(2,3.464);
| |
− | S=(1,1.732);
| |
− | T=(3,1.732);
| |
− | R=(2,0);
| |
− | X=(0,0);
| |
− | Y=(4,0);
| |
− | draw(U--S);
| |
− | draw(S--U--T);
| |
− | draw(S--X--Y--T,red);
| |
− | draw(arc(X,R,S),red);
| |
− | draw(arc(Y,T,R),red);
| |
− | label("$U$",U, N);
| |
− | label("$S$", S, W);
| |
− | label("$T$", T, E);
| |
− | label("$R$", R, S);
| |
− | label("$X$",X, W);
| |
− | label("$Y$", Y, E);
| |
− | </asy>
| |
− | We can clearly see that <math>\triangle UXY</math> is an equilateral triangle, because the problem states that <math>m\angle TUS = 60^\circ</math>. We can figure out that <math>m\angle SXR= 60^\circ</math> and <math>m\angle TYR = 60^\circ</math> because they are <math>\frac{1}{6}</math> of a circle. The area of the figure is equal to <math>[\triangle UXY]</math> minus the combined area of the <math>2</math> sectors of the circles (in red). Using the area formula for an equilateral triangle, <math>\frac{a^2\sqrt{3}}{4},</math> where <math>a</math> is the side length of the equilateral triangle, <math>[\triangle UXY]</math> is <math>\frac{\sqrt 3}{4} \cdot 4^2 = 4\sqrt 3.</math> The combined area of the <math>2</math> sectors is <math>2\cdot\frac16\cdot\pi r^2</math>, which is <math>\frac 13\pi \cdot 2^2 = \frac{4\pi}{3}.</math> Thus, our final answer is <math>\boxed{\textbf{(B)}\ 4\sqrt{3}-\frac{4\pi}{3}}.</math>
| |
| | | |
| ==Solution 2== | | ==Solution 2== |
Line 42: |
Line 16: |
| | | |
| ==Video Solutions== | | ==Video Solutions== |
− | https://youtu.be/LT4gyH--328
| |
− |
| |
− | https://youtu.be/wc5rGulTTR8
| |
− |
| |
− | - Happytwin
| |
| | | |
− | https://youtu.be/aE0oAq4Q_Ks
| |
− |
| |
− | https://euclideanmathcircle.wixsite.com/emc1/videos?wix-vod-video-id=3a7970c3cd01453aa4263a8be7998588&wix-vod-comp-id=comp-kn8844mv
| |
| | | |
| https://youtu.be/sVclz6EmpEU | | https://youtu.be/sVclz6EmpEU |
| | | |
| ~savannahsolver | | ~savannahsolver |
− |
| |
− | =Hardest solution & Video=
| |
− |
| |
− | First, we must make it like an equilateral triangle. If you add two of the same arcs, you will get an equilateral triangle. The goal is to find ONE of the arcs and multiply it by two. Then subtract it from the equilateral triangle. If you look at the triangle, T and S are midpoints of the equilateral triangle. So now we can find the arc.These arcs are 2/6 pi so now you multiply by 2 so 4/3 pi. And subtract. Equilateral's area is 4 sqrt 3. So now you do 4 sqrt 3 - 4/3 pi. That is the answer and thank you.
| |
− |
| |
− | ~ math.is.hard.to.understand
| |
− |
| |
− | Here's a video to understand it (credits to ~ pi_is_3.14)
| |
− |
| |
− | https://youtu.be/j3QSD5eDpzU?t=1350
| |
− |
| |
− | ==See Also==
| |
− | {{AMC8 box|year=2017|num-b=24|after=Last Problem}}
| |
− |
| |
− | {{MAA Notice}}
| |
Revision as of 10:06, 24 July 2024