Difference between revisions of "2017 AMC 8 Problems/Problem 25"
m (→Solution: .....I added clarification:)) |
(→Video Solutions) |
||
(49 intermediate revisions by 29 users not shown) | |||
Line 1: | Line 1: | ||
− | ==Problem | + | ==Problem== |
In the figure shown, <math>\overline{US}</math> and <math>\overline{UT}</math> are line segments each of length 2, and <math>m\angle TUS = 60^\circ</math>. Arcs <math>\overarc{TR}</math> and <math>\overarc{SR}</math> are each one-sixth of a circle with radius 2. What is the area of the region shown? | In the figure shown, <math>\overline{US}</math> and <math>\overline{UT}</math> are line segments each of length 2, and <math>m\angle TUS = 60^\circ</math>. Arcs <math>\overarc{TR}</math> and <math>\overarc{SR}</math> are each one-sixth of a circle with radius 2. What is the area of the region shown? | ||
Line 7: | Line 7: | ||
<math>\textbf{(A) }3\sqrt{3}-\pi\qquad\textbf{(B) }4\sqrt{3}-\frac{4\pi}{3}\qquad\textbf{(C) }2\sqrt{3}\qquad\textbf{(D) }4\sqrt{3}-\frac{2\pi}{3}\qquad\textbf{(E) }4+\frac{4\pi}{3}</math> | <math>\textbf{(A) }3\sqrt{3}-\pi\qquad\textbf{(B) }4\sqrt{3}-\frac{4\pi}{3}\qquad\textbf{(C) }2\sqrt{3}\qquad\textbf{(D) }4\sqrt{3}-\frac{2\pi}{3}\qquad\textbf{(E) }4+\frac{4\pi}{3}</math> | ||
− | ==Solution== | + | ==Solution 2== |
− | + | <asy>draw((1,1.732)--(2,3.464)--(3,1.732)); draw(arc((0,0),(2,0),(1,1.732))); draw(arc((4,0),(3,1.732),(2,0))); label("$U$", (2,3.464), N); label("$S$", (1,1.732), W); label("$T$", (3,1.732), E); label("$R$", (2,0), S);</asy> | |
+ | |||
+ | In addition to the given diagram, we can draw lines <math>\overline{SR}</math> and <math>\overline{RT}.</math> The area of rhombus <math>SRTU</math> is half the product of its diagonals, which is <math>\frac{2\sqrt3 \cdot 2}{2}=2\sqrt3</math>. However, we have to subtract off the circular segments. The area of those can be found by computing the area of the circle with radius 2, multiplying it by <math>\frac{1}{6}</math>, then finally subtracting the area of an equilateral triangle with a side length 2 from the sector. The sum of the areas of the circular segments is <math>2(\frac{4 \pi}{6}-\sqrt3).</math> The area of rhombus <math>SRTU</math> minus the circular segments is <math>2\sqrt3-\frac{4 \pi}{3}+2\sqrt3= \boxed{\textbf{(B)}\ 4\sqrt{3}-\frac{4\pi}{3}}.</math> | ||
+ | |||
+ | ~PEKKA | ||
+ | |||
+ | ==Video Solutions== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | https://youtu.be/sVclz6EmpEU | |
− | |||
− | + | ~savannahsolver |
Revision as of 10:06, 24 July 2024
Problem
In the figure shown, and are line segments each of length 2, and . Arcs and are each one-sixth of a circle with radius 2. What is the area of the region shown?
Solution 2
In addition to the given diagram, we can draw lines and The area of rhombus is half the product of its diagonals, which is . However, we have to subtract off the circular segments. The area of those can be found by computing the area of the circle with radius 2, multiplying it by , then finally subtracting the area of an equilateral triangle with a side length 2 from the sector. The sum of the areas of the circular segments is The area of rhombus minus the circular segments is
~PEKKA
Video Solutions
~savannahsolver