Difference between revisions of "1997 USAMO Problems/Problem 2"

(Solution)
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
<math>\triangle ABC</math> is a triangle. Take points <math>D, E, F</math> on the perpendicular bisectors of <math>BC, CA, AB</math> respectively. Show that the lines through <math>A, B, C</math> perpendicular to <math>EF, FD, DE</math> respectively are concurrent.
 
<math>\triangle ABC</math> is a triangle. Take points <math>D, E, F</math> on the perpendicular bisectors of <math>BC, CA, AB</math> respectively. Show that the lines through <math>A, B, C</math> perpendicular to <math>EF, FD, DE</math> respectively are concurrent.
==Solution==
+
==Solution 1==
 
Let the perpendicular from A meet FE at A'. Define B' and C' similiarly. By [[Carnot's Theorem]], The three lines are [[concurrent]] if
 
Let the perpendicular from A meet FE at A'. Define B' and C' similiarly. By [[Carnot's Theorem]], The three lines are [[concurrent]] if
  
Line 10: Line 10:
 
QED
 
QED
  
 +
==Solution 2==
 +
We split this into two cases:
 +
 +
Case 1: <math>D,E,F</math> are non-collinear
 +
 +
Observe that since <math>D,E,F</math> lie on perpendicular bisectors, then we get that <math>DC=DB</math>, <math>EC=EA</math>, and <math>FA=FB</math>. This motivates us to construct a circle <math>\omega_1</math> centered at <math>D</math> with radius <math>DC</math>, and similarly construct <math>\omega_2</math> and <math>\omega_3</math> respectively for <math>E</math> and <math>F</math>.
  
==Solution 2==
+
Now, clearly <math>\omega_1</math> and <math>\omega_2</math> intersect at <math>C</math> and some other point. Now, we know that <math>DE</math> is the line containing the two centers. So, the line perpendicular to <math>DE</math> and passing through <math>C</math> must be the radical axis of <math>\omega_1</math> and <math>\omega_2</math>, which is exactly the line that the problem describes! We do this similarly for the others pairs of circles.
These three lines concur at the radical center of the three circles centered at <math>D, E, F</math> and passing through <math>C, A, B</math> respectively. (Indeed, each line passes through one intersection point of a pair of circles, and because it is perpendicular to the line of centers it must the the radical axis of these circles.)
+
 
 +
Now by the radical lemma, the pairwise radical axes of <math>\omega_1,\omega_2,\omega_3</math> are concurrent, as desired, and they intersect at the radical center.
 +
 
 +
Case 2: <math>D,E,F</math> are collinear
 +
 
 +
Now, we are drawing perpendicular lines from <math>A</math>, <math>B</math>, and <math>C</math> onto the single line <math>DEF</math>. Clearly, these lines are parallel and concur at the point of infinity.
  
{{alternate solutions}}
+
==Solution 3==
  
 +
Notice that <math>DEF</math> and <math>ABC</math> are orthologic, so the perpendiculars concur at the opposite center of orthology.
 
==See Also==
 
==See Also==
 
{{USAMO newbox|year=1997|num-b=1|num-a=3}}
 
{{USAMO newbox|year=1997|num-b=1|num-a=3}}

Latest revision as of 19:23, 24 July 2024

Problem

$\triangle ABC$ is a triangle. Take points $D, E, F$ on the perpendicular bisectors of $BC, CA, AB$ respectively. Show that the lines through $A, B, C$ perpendicular to $EF, FD, DE$ respectively are concurrent.

Solution 1

Let the perpendicular from A meet FE at A'. Define B' and C' similiarly. By Carnot's Theorem, The three lines are concurrent if

$FA'^2-EA'^2+EC'^2-DC'^2+DB'^2-FB'^2 = AF^2-AE^2+CE^2-CD^2+BD^2-BF^2 = 0$

But this is clearly true, since D lies on the perpendicular bisector of BC, BD = DC.

QED

Solution 2

We split this into two cases:

Case 1: $D,E,F$ are non-collinear

Observe that since $D,E,F$ lie on perpendicular bisectors, then we get that $DC=DB$, $EC=EA$, and $FA=FB$. This motivates us to construct a circle $\omega_1$ centered at $D$ with radius $DC$, and similarly construct $\omega_2$ and $\omega_3$ respectively for $E$ and $F$.

Now, clearly $\omega_1$ and $\omega_2$ intersect at $C$ and some other point. Now, we know that $DE$ is the line containing the two centers. So, the line perpendicular to $DE$ and passing through $C$ must be the radical axis of $\omega_1$ and $\omega_2$, which is exactly the line that the problem describes! We do this similarly for the others pairs of circles.

Now by the radical lemma, the pairwise radical axes of $\omega_1,\omega_2,\omega_3$ are concurrent, as desired, and they intersect at the radical center.

Case 2: $D,E,F$ are collinear

Now, we are drawing perpendicular lines from $A$, $B$, and $C$ onto the single line $DEF$. Clearly, these lines are parallel and concur at the point of infinity.

Solution 3

Notice that $DEF$ and $ABC$ are orthologic, so the perpendiculars concur at the opposite center of orthology.

See Also

1997 USAMO (ProblemsResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png