Difference between revisions of "1985 AJHSME Problems/Problem 8"

(Solution)
(Solution 2)
 
(One intermediate revision by the same user not shown)
Line 15: Line 15:
 
==Solution 2==
 
==Solution 2==
  
Since a is negative, some numbers will be positive and some will be negative.  
+
Since a is negative, some numbers will be positive and some will be negative. The positive numbers are <math>-3a, a^2, 1.</math> We know that <math>a=-2</math> so <math>1<a^2<-3a.</math> Thus our answer is <math>\boxed{\text{A}}.</math>
  
The positive numbers are <math>-3a, a^2, 1.</math> <math>a=-2</math> so <math>1<a^2<-3a.</math>
+
~sanaops9
 
 
Thus our answer is <math>\boxed{\text{A}}</math>
 
  
 
==Video Solution==
 
==Video Solution==

Latest revision as of 12:32, 1 August 2024

Problem

If $a = - 2$, the largest number in the set $\{ - 3a, 4a, \frac {24}{a}, a^2, 1\}$ is

$\text{(A)}\ -3a \qquad \text{(B)}\ 4a \qquad \text{(C)}\ \frac {24}{a} \qquad \text{(D)}\ a^2 \qquad \text{(E)}\ 1$

Solution 1

Since all the numbers are small, we can just evaluate the set to be \[\{ (-3)(-2), 4(-2), \frac{24}{-2}, (-2)^2, 1 \}= \{ 6, -8, -12, 4, 1 \}\]

The largest number is $6$, which corresponds to $-3a$.

$\boxed{\text{A}}$

Solution 2

Since a is negative, some numbers will be positive and some will be negative. The positive numbers are $-3a, a^2, 1.$ We know that $a=-2$ so $1<a^2<-3a.$ Thus our answer is $\boxed{\text{A}}.$

~sanaops9

Video Solution

https://youtu.be/_rGBskmj29M

~savannahsolver

See Also

1985 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png