Difference between revisions of "2004 AMC 10A Problems/Problem 9"

Line 3: Line 3:
  
 
<center>[[Image:AMC10_2004A_9.gif]]</center>
 
<center>[[Image:AMC10_2004A_9.gif]]</center>
 +
 +
<math> \mathrm{(A) \ } 2 \qquad \mathrm{(B) \ } 4 \qquad \mathrm{(C) \ } 5 \qquad \mathrm{(D) \ } 8 \qquad \mathrm{(E) \ } 9  </math>
  
 
==Solution==
 
==Solution==

Revision as of 09:20, 15 January 2008

Problem

In the figure, $\angle EAB$ and $\angle ABC$ are right angles. $AB=4, BC=6, AE=8$, and $AC$ and $BE$ intersect at $D$. What is the difference between the areas of $\triangle ABC$ and $\triangle BDC$?

AMC10 2004A 9.gif

$\mathrm{(A) \ } 2 \qquad \mathrm{(B) \ } 4 \qquad \mathrm{(C) \ } 5 \qquad \mathrm{(D) \ } 8 \qquad \mathrm{(E) \ } 9$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions