Difference between revisions of "2024 AMC 8 Problems/Problem 11"

(Solution 1)
(Solution 4)
 
(28 intermediate revisions by 13 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
 +
The coordinates of <math>\triangle ABC</math> are <math>A(5,7)</math>, <math>B(11,7)</math>, and <math>C(3,y)</math>, with <math>y>7</math>. The area of <math>\triangle ABC</math> is 12. What is the value of <math>y</math>?
 +
 +
<asy>
 +
 +
draw((3,11)--(11,7)--(5,7)--(3,11));
 +
 +
dot((5,7));
 +
label("$A(5,7)$",(5,7),S);
 +
 +
dot((11,7));
 +
label("$B(11,7)$",(11,7),S);
 +
 +
dot((3,11));
 +
label("$C(3,y)$",(3,11),NW);
 +
 +
</asy>
 +
 +
 +
<math>\textbf{(A) }8\qquad\textbf{(B) }9\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad \textbf{(E) }12</math>
 +
 
==Solution 1==
 
==Solution 1==
D
+
The triangle has base <math>6,</math> which means its height satisfies
 +
<cmath>\dfrac{6h}{2}=3h=12.</cmath>
 +
This means that <math>h=4, </math> so the answer is <math>7+4=\boxed{(D) 11}</math>
 +
 
 +
==Solution 2==
 +
By the Shoelace Theorem, <math>\triangle ABC</math> has area <cmath>\frac{1}{2}|(y \cdot 11 + 7 \cdot 5 + 7 \cdot 3) - (3 \cdot 7 + 11 \cdot 7 + 5 \cdot y)| = \frac{1}{2}|(11y + 56) - (98 + 5y)| = \frac{1}{2}|6y - 42|</cmath>. From the problem, this is equal to <math>12</math>. We now solve for y.
 +
 
 +
<math>\frac{1}{2}|6y - 42| = 12</math>
 +
 
 +
<math>|6y-42| = 24</math>
 +
 
 +
<math>6y - 42 = 24</math> OR <math>6y - 42 = -24</math>
 +
 
 +
<math>6y = 66</math> OR <math>6y = 18</math>
 +
 
 +
<math>y = 11</math> OR <math>y = 3</math>
 +
 
 +
However, since, as stated in the problem, <math>y > 7</math>, our only valid solution is <math>\boxed{\textbf{(D)} 11}</math>.
 +
 
 +
~ [https://artofproblemsolving.com/wiki/index.php/User:Cxsmi cxsmi]
 +
 
 +
==Solution 3==
 +
As in the figure, the triangle is determined by the vectors <math>\begin{bmatrix}-2 \\ y-7\end{bmatrix}</math> and <math>\begin{bmatrix}6\\0\end{bmatrix}</math>. Recall that the absolute value of the determinant of these vectors is the area of the parallelogram determined by those vectors; the triangle has half the area of that parallelogram. Then we must have that <math>\frac{1}{2}|\begin{vmatrix}-2 & y-7\\6 & 0\end{vmatrix}| = 12 \implies \begin{vmatrix}-2 & y-7\\6 & 0\end{vmatrix} = \pm 24</math>. Expanding the determinants, we find that <math>-6(y-7) = 24</math> or <math>-6(y-7) = -24</math>. Solving each equation individually, we find that <math>y = 3</math> or <math>y = 11</math>. However, the problem states that <math>y > 7</math>, so the only valid solution is <math>\boxed{\textbf{(D)} 11}</math>.
 +
 
 +
~ [https://artofproblemsolving.com/wiki/index.php/User:Cxsmi cxsmi] (again!)
 +
 
 +
==Video Solution by Math-X (First understand the problem!!!)==
 +
https://youtu.be/BaE00H2SHQM?si=qhPbhu8o5hamBrtb&t=2315
 +
 
 +
~Math-X
 +
 
 +
==Video Solution  (easy to digest) by Power Solve==
 +
https://www.youtube.com/watch?v=2UIVXOB4f0o
 +
 
 +
 
 +
==Video Solution by NiuniuMaths (Easy to understand!)==
 +
https://www.youtube.com/watch?v=V-xN8Njd_Lc
 +
 
 +
~NiuniuMaths
 +
 
 +
==Video Solution 3 by SpreadTheMathLove==
 +
https://www.youtube.com/watch?v=RRTxlduaDs8
 +
 
 +
== Video Solution by CosineMethod [🔥Fast and Easy🔥]==
 +
 
 +
https://www.youtube.com/watch?v=-64aBL-lEVg
 +
 
 +
==Video Solution by Interstigation==
 +
https://youtu.be/ktzijuZtDas&t=1063
 +
 
 +
==See Also==
 +
{{AMC8 box|year=2024|num-b=10|num-a=12}}
 +
{{MAA Notice}}

Latest revision as of 17:11, 18 August 2024

Problem

The coordinates of $\triangle ABC$ are $A(5,7)$, $B(11,7)$, and $C(3,y)$, with $y>7$. The area of $\triangle ABC$ is 12. What is the value of $y$?

[asy]  draw((3,11)--(11,7)--(5,7)--(3,11));  dot((5,7)); label("$A(5,7)$",(5,7),S);  dot((11,7)); label("$B(11,7)$",(11,7),S);  dot((3,11)); label("$C(3,y)$",(3,11),NW);  [/asy]


$\textbf{(A) }8\qquad\textbf{(B) }9\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad \textbf{(E) }12$

Solution 1

The triangle has base $6,$ which means its height satisfies \[\dfrac{6h}{2}=3h=12.\] This means that $h=4,$ so the answer is $7+4=\boxed{(D) 11}$

Solution 2

By the Shoelace Theorem, $\triangle ABC$ has area \[\frac{1}{2}|(y \cdot 11 + 7 \cdot 5 + 7 \cdot 3) - (3 \cdot 7 + 11 \cdot 7 + 5 \cdot y)| = \frac{1}{2}|(11y + 56) - (98 + 5y)| = \frac{1}{2}|6y - 42|\]. From the problem, this is equal to $12$. We now solve for y.

$\frac{1}{2}|6y - 42| = 12$

$|6y-42| = 24$

$6y - 42 = 24$ OR $6y - 42 = -24$

$6y = 66$ OR $6y = 18$

$y = 11$ OR $y = 3$

However, since, as stated in the problem, $y > 7$, our only valid solution is $\boxed{\textbf{(D)} 11}$.

~ cxsmi

Solution 3

As in the figure, the triangle is determined by the vectors $\begin{bmatrix}-2 \\ y-7\end{bmatrix}$ and $\begin{bmatrix}6\\0\end{bmatrix}$. Recall that the absolute value of the determinant of these vectors is the area of the parallelogram determined by those vectors; the triangle has half the area of that parallelogram. Then we must have that $\frac{1}{2}|\begin{vmatrix}-2 & y-7\\6 & 0\end{vmatrix}| = 12 \implies \begin{vmatrix}-2 & y-7\\6 & 0\end{vmatrix} = \pm 24$. Expanding the determinants, we find that $-6(y-7) = 24$ or $-6(y-7) = -24$. Solving each equation individually, we find that $y = 3$ or $y = 11$. However, the problem states that $y > 7$, so the only valid solution is $\boxed{\textbf{(D)} 11}$.

~ cxsmi (again!)

Video Solution by Math-X (First understand the problem!!!)

https://youtu.be/BaE00H2SHQM?si=qhPbhu8o5hamBrtb&t=2315

~Math-X

Video Solution (easy to digest) by Power Solve

https://www.youtube.com/watch?v=2UIVXOB4f0o


Video Solution by NiuniuMaths (Easy to understand!)

https://www.youtube.com/watch?v=V-xN8Njd_Lc

~NiuniuMaths

Video Solution 3 by SpreadTheMathLove

https://www.youtube.com/watch?v=RRTxlduaDs8

Video Solution by CosineMethod [🔥Fast and Easy🔥]

https://www.youtube.com/watch?v=-64aBL-lEVg

Video Solution by Interstigation

https://youtu.be/ktzijuZtDas&t=1063

See Also

2024 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png