Difference between revisions of "2008 AMC 8 Problems/Problem 22"

(17 intermediate revisions by 8 users not shown)
Line 8: Line 8:
 
\textbf{(E)}\ 34</math>
 
\textbf{(E)}\ 34</math>
  
==Video Solution==
+
==Solution 1==
https://youtu.be/rQUwNC0gqdg?t=230
 
 
 
==Solution 2==
 
 
Instead of finding n, we find <math>x=\frac{n}{3}</math>. We want <math>x</math> and <math>9x</math> to be three-digit whole numbers. The smallest three-digit whole number is <math>100</math>, so that is our minimum value for <math>x</math>, since if <math>x \in \mathbb{Z^+}</math>, then <math>9x \in \mathbb{Z^+}</math>. The largest three-digit whole number divisible by <math>9</math> is <math>999</math>, so our maximum value for <math>x</math> is <math>\frac{999}{9}=111</math>. There are <math>12</math> whole numbers in the closed set <math>\left[100,111\right]</math> , so the answer is <math>\boxed{\textbf{(A)}\ 12}</math>.
 
Instead of finding n, we find <math>x=\frac{n}{3}</math>. We want <math>x</math> and <math>9x</math> to be three-digit whole numbers. The smallest three-digit whole number is <math>100</math>, so that is our minimum value for <math>x</math>, since if <math>x \in \mathbb{Z^+}</math>, then <math>9x \in \mathbb{Z^+}</math>. The largest three-digit whole number divisible by <math>9</math> is <math>999</math>, so our maximum value for <math>x</math> is <math>\frac{999}{9}=111</math>. There are <math>12</math> whole numbers in the closed set <math>\left[100,111\right]</math> , so the answer is <math>\boxed{\textbf{(A)}\ 12}</math>.
  
 
- ColtsFan10
 
- ColtsFan10
  
==Solution 3==
+
==Solution 2==
 
   
 
   
 
We can set the following inequalities up to satisfy the conditions given by the question,
 
We can set the following inequalities up to satisfy the conditions given by the question,
Line 24: Line 21:
 
Once we simplify these and combine the restrictions, we get the inequality, <math>300 \leq n \leq 333</math>.
 
Once we simplify these and combine the restrictions, we get the inequality, <math>300 \leq n \leq 333</math>.
 
Now we have to find all multiples of 3 in this range for <math>\frac{n}{3}</math> to be an integer. We can compute this by setting <math>\frac{n}
 
Now we have to find all multiples of 3 in this range for <math>\frac{n}{3}</math> to be an integer. We can compute this by setting <math>\frac{n}
{3}=x</math>, where <math>x \in \mathbb{Z^+}</math>. Substituting <math>x</math> for <math>n</math> in this inequality, we get, <math>100 \leq x \leq 111</math>, and there are <math>111-100+1</math> integers in this range giving us the answer, <math>\boxed{\textbf{(A)}\ 12}</math>.
+
{3}=x</math>, where <math>x \in \mathbb{Z^+}</math>. Substituting <math>x</math> for <math>n</math> in the previous inequality, we get, <math>100 \leq x \leq 111</math>, and there are <math>111-100+1</math> integers in this range giving us the answer, <math>\boxed{\textbf{(A)}\ 12}</math>.
-kn07
+
 
 +
- kn07
 +
 
 +
==Solution 3==
 +
 
 +
We can create a list of the positive integers <math>n</math> that fulfill the requirement of <math>\frac {n}{3}</math> and <math>3n</math> are three-digit whole numbers. The first number of this list must be <math>300</math> since <math>\frac {300}{3} = 100</math> is the smallest positive integer that satisfies this requirement. The last number of this list must be <math>333</math> since <math>3 \cdot 333 = 999</math> is the largest positive integer that satisfies this requirement. Since the problem requires <math>\frac {n}{3}</math> and <math>3n</math> must be whole numbers, the other numbers must be multiples of 3 (just like 300 and 333), so the list would look like this:
 +
                                            <math>300, 303, 306, . . . , 333</math>
 +
To put this list in to a countable form we must put it in a form similar to <math>1,2,3, . . ., n</math>. So, we manipulate it as follows:
 +
                          <math>300-300,303-300,306-300, . . .,333-300 \Rightarrow 0,3,6, . . ., 33</math>
 +
 
 +
                          <math>\frac{0}{3}, \frac{3}{3}, \frac{6}{3}, . . ., \frac{33}{3} \Rightarrow 0,1,2, . . ., 11</math>
  
 +
                              <math>0+1,1+1,1+2, . . ., 11+1 \Rightarrow 1,2,3, . . ., 12</math>
  
 +
Now we can tell that there are 12 positive integers which satisfies the two requirements, so the answer is <math>\boxed{\textbf{(A)}\ 12}</math>.
  
 +
~julia333                 
  
  
 +
 +
==Video Solution by OmegaLearn==
 +
https://youtu.be/rQUwNC0gqdg?t=230
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2008|num-b=21|num-a=23}}
 
{{AMC8 box|year=2008|num-b=21|num-a=23}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 13:34, 30 August 2024

Problem

For how many positive integer values of $n$ are both $\frac{n}{3}$ and $3n$ three-digit whole numbers?

$\textbf{(A)}\ 12\qquad \textbf{(B)}\ 21\qquad \textbf{(C)}\ 27\qquad \textbf{(D)}\ 33\qquad \textbf{(E)}\ 34$

Solution 1

Instead of finding n, we find $x=\frac{n}{3}$. We want $x$ and $9x$ to be three-digit whole numbers. The smallest three-digit whole number is $100$, so that is our minimum value for $x$, since if $x \in \mathbb{Z^+}$, then $9x \in \mathbb{Z^+}$. The largest three-digit whole number divisible by $9$ is $999$, so our maximum value for $x$ is $\frac{999}{9}=111$. There are $12$ whole numbers in the closed set $\left[100,111\right]$ , so the answer is $\boxed{\textbf{(A)}\ 12}$.

- ColtsFan10

Solution 2

We can set the following inequalities up to satisfy the conditions given by the question, $100 \leq \frac{n}{3} \leq 999$, and $100 \leq 3n \leq 999$. Once we simplify these and combine the restrictions, we get the inequality, $300 \leq n \leq 333$. Now we have to find all multiples of 3 in this range for $\frac{n}{3}$ to be an integer. We can compute this by setting $\frac{n} {3}=x$, where $x \in \mathbb{Z^+}$. Substituting $x$ for $n$ in the previous inequality, we get, $100 \leq x \leq 111$, and there are $111-100+1$ integers in this range giving us the answer, $\boxed{\textbf{(A)}\ 12}$.

- kn07

Solution 3

We can create a list of the positive integers $n$ that fulfill the requirement of $\frac {n}{3}$ and $3n$ are three-digit whole numbers. The first number of this list must be $300$ since $\frac {300}{3} = 100$ is the smallest positive integer that satisfies this requirement. The last number of this list must be $333$ since $3 \cdot 333 = 999$ is the largest positive integer that satisfies this requirement. Since the problem requires $\frac {n}{3}$ and $3n$ must be whole numbers, the other numbers must be multiples of 3 (just like 300 and 333), so the list would look like this:

                                            $300, 303, 306, . . . , 333$

To put this list in to a countable form we must put it in a form similar to $1,2,3, . . ., n$. So, we manipulate it as follows:

                         $300-300,303-300,306-300, . . .,333-300 \Rightarrow 0,3,6, . . ., 33$
                         $\frac{0}{3}, \frac{3}{3}, \frac{6}{3}, . . ., \frac{33}{3} \Rightarrow 0,1,2, . . ., 11$
                              $0+1,1+1,1+2, . . ., 11+1 \Rightarrow 1,2,3, . . ., 12$

Now we can tell that there are 12 positive integers which satisfies the two requirements, so the answer is $\boxed{\textbf{(A)}\ 12}$.

~julia333


Video Solution by OmegaLearn

https://youtu.be/rQUwNC0gqdg?t=230

See Also

2008 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png