Difference between revisions of "2023 IOQM/Problem 4"

m (Solution1(Diophantine))
(Problem)
 
(3 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
<cmath>x^{4}=(x-1)(y^{3}-23)-1</cmath>
 
<cmath>x^{4}=(x-1)(y^{3}-23)-1</cmath>
  
Find the maximum possible value of <math>x + y</math>.
+
Find the maximum possible value of <math>x + y</math>
==Solution1(Diophantine)==
 
<math>x^{4}=(x-1)(y^{3}-23)-1</math>, subtracting 1 on both sides we get  <math>x^{4}- 1^{4}=(x-1)(y^{3}-23)-2</math> [[factorizing]] the LHS we get
 
 
 
 
 
<math>(x^{2}+ 1)(x-1)(x+1) =(x-1)(y^{3}-23)-2</math>.  Now [[divide]] the [[equation]] by <math>x-1</math>(considering that <math>x\neq 1</math>) to get <cmath>(x^{2}+ 1)(x+1) = (y^{3}-23)-\frac{2}{x-1}</cmath>  Since <math>x</math> and <math>y</math> are [[integers]], this implies <math>x-1</math> [[divides]] 2,  so possible values <math>x-1</math> are -1, -2, 1, 2 
 
 
 
This means <math>x</math>= 0, -1(Rejected as <math>x</math> is a [[positive integer]]), 2, 3. so <math>x</math> =2 or 3. Now checking for each value, we find that when <math>x</math>=2, there is no [[integral]] value of <math>y</math>. When <math>x</math>= 3, <math>y</math> evaluates to 4  which is the only possible positive [[integral]] solution.
 
 
 
So, <math>x+y</math>= 3+ 4 = <math>\boxed{7}</math>
 
 
 
~SANSGANKRSNGUPTA(inspired by PJ AND AM sir)
 

Latest revision as of 23:30, 31 August 2024

Problem

Let $x, y$ be positive integers such that \[x^{4}=(x-1)(y^{3}-23)-1\]

Find the maximum possible value of $x + y$